Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heavy quarks, and the hadrons containing them, are excellent probes of the QCD medium formed in high-energy heavy-ion collisions, as they provide essential information on the transport properties of the medium and how quarks color-neutralize into hadrons. Large theoretical and phenomenological efforts have been dedicated thus far to assess the diffusion of charm and bottom quarks in the quark-gluon plasma and their subsequent hadronization into heavy-flavor (HF) hadrons. However, the fireball formed in heavy-ion collisions also features an extended hadronic phase, and therefore any quantitative analysis of experimental observables needs to account for the rescattering of charm and bottom hadrons. This is further reinforced by the presence of a QCD cross-over transition and the notion that the interaction strength is maximal in the vicinity of the pseudo-critical temperature. We review existing approaches for evaluating the interactions of open HF hadrons in a hadronic heat bath and the pertinent results for scattering amplitudes, spectral functions and transport coefficients. While most of the work to date has focused on 𝐷-mesons, we also discuss excited states as well as HF baryons and the bottom sector. Both the HF hadro-chemistry and bottom observables will play a key role in future experimental measurements. We also conduct a survey of transport calculations in heavy-ion collisions that have included effects of hadronic HF diffusion and assess its impact on various observables.more » « lessFree, publicly-accessible full text available May 19, 2026
-
The transport and spectral properties of heavy quarkonia in hot QCD matter are a central ingredient to describe their observables in high-energy heavy-ion collisions. We review recent activity in evaluating these properties, including a nonperturbative quantum many-body approach where the basic two-body interaction kernel is constrained by quantities that can be computed with good precision in thermal lattice QCD. We then give a brief overview of quarkonium transport approaches to heavy-ion collisions. Focusing on the semiclassical approach we discuss the current interpretation of charmonium and bottomonium observables at RHIC and the LHC, including excitation functions that started with 𝐽/𝜓 and 𝜓′ data from the heavy-ion program at the SPS.more » « lessFree, publicly-accessible full text available February 7, 2026
-
The invariant mass spectra of dileptons radiated from the fireballs formed in high-energy heavy-ion collisions have been successfully used to investigate the properties of hot and dense QCD matter. Using a realistic model for the in-medium electromagnetic spectral function, we predict polarization observables and compare them to experiment. This allows, for the first time, independent tests of the longitudinal and transverse components of the virtual photon’s selfenergy. While the low- and high-mass regions exhibit the expected limits of transverse and unpolarized photons, respectively, baryon-driven medium effects in the 𝜌-meson mass region create a marked longitudinal polarization that transits into a largely unpolarized emission from the quark-gluon plasma, thus providing a sensitive test of microscopic emission processes in QCD matter. Applications to available data from the HADES and NA60 experiments at SIS and SPS energies, respectively, are consistent with our predictions and set the stage for quantitative polarization studies at FAIR and collider energies.more » « lessFree, publicly-accessible full text available February 1, 2026
-
This report summarizes the work of the EMMI Rapid Reaction Task Force on “Real and Virtual Photon Production at Ultra-Low Transverse Momentum and Low Mass at the LHC”. We provide an overview of the soft-photon puzzle, i.e., of the long-standing discrepancy between experimental data and predictions based on Low’s soft-photon theorem, also referred to as “anomalous” soft photon production, and we review the current theoretical understanding of soft radiation and soft theorems. We also focus on low-mass dileptons as a tool for determining the electrical conductivity of the medium produced in high-energy nucleus-nucleus collisions. We discuss how both topics can be addressed with the planned ALICE 3 detector at the LHC.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The electric conductivity, , is a fundamental transport coefficient of QCD matter that can be related to the zero-energy limit of the electromagnetic (EM) spectral function at vanishing three-momentum in the medium. The EM spectral function is also the central quantity to describe the thermal emission rates and pertinent spectra of photon and dilepton radiation in heavy-ion collisions. Employing a model for dilepton rates that combines hadronic many-body theory with nonperturbative QGP emission constrained by lattice QCD which describes existing dilepton measurements in heavy-ion collisions, I investigate the sensitivity of low-mass dilepton spectra in Pb-Pb collisions at the CERN Large Hadron Collider (LHC) to . In particular, I separately evaluate the contributions from QGP and hadronic emission, and identify signatures that can help to extract from high-precision experimental data expected to be attainable with future detector systems at the LHC. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
-
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and mid-rapidity. In particular, we employ the most recent charm-production cross sections reported in pp collisions, which are pivotal for the magnitude of the regeneration contribution, and their modifications due to cold-nuclear-matter (CNM) effects. Multi-differential observables are calculated in terms of nuclear modification factors as a function of centrality, transverse momentum, and rapidity, including the contributions from feeddown from bottom hadron decays. For our predictions for ψ(2S) production, the mechanism of sequential regeneration relative to the more strongly bound J/ψ meson plays an important role in interpreting recent ALICE data.more » « less
-
Heavy-flavor hadrons produced in ultrarelativistic heavy-ion collisions are a sensitive probe for studying hadronization mechanisms of the quark-gluon-plasma. In this paper, we survey how different transport models for the simulation of heavy-quark diffusion through a quark-gluon plasma in heavy-ion collisions implement hadronization and how this affects final state observables. Utilizing the same input charm-quark distribution in all models at the hadronization transition, we find that the transverse-momentum dependence of the nuclear modification factor of various charm hadron species has significant sensitivity to the hadronization scheme. In addition, the charm-hadron elliptic flow exhibits a nontrivial dependence on the elliptic flow of the hadronizing partonic medium.more » « less
-
This document summarizes the efforts of the EMMI Rapid Reaction Task Force on “Suppression and (re)generation of quarkonium in heavy-ion collisions at the LHC”, centered around their 2019 and 2022 meetings. It provides a review of existing experimental results and theoretical approaches, including lattice QCD calculations and semiclassical and quantum approaches for the dynamical evolution of quarkonia in the quark-gluon plasma as probed in high-energy heavy-ion collisions. The key ingredients of the transport models are itemized to facilitate comparisons of calculated quantities such as reaction rates, binding energies, and nuclear modification factors. A diagnostic assessment of the various results is attempted and coupled with an outlook for the future.more » « less
An official website of the United States government
