skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electric conductivity of QCD matter and dilepton spectra in heavy-ion collisions
The electric conductivity, σ el , is a fundamental transport coefficient of QCD matter that can be related to the zero-energy limit of the electromagnetic (EM) spectral function at vanishing three-momentum in the medium. The EM spectral function is also the central quantity to describe the thermal emission rates and pertinent spectra of photon and dilepton radiation in heavy-ion collisions. Employing a model for dilepton rates that combines hadronic many-body theory with nonperturbative QGP emission constrained by lattice QCD which describes existing dilepton measurements in heavy-ion collisions, I investigate the sensitivity of low-mass dilepton spectra in Pb-Pb collisions at the CERN Large Hadron Collider (LHC) to σ el . In particular, I separately evaluate the contributions from QGP and hadronic emission, and identify signatures that can help to extract σ el from high-precision experimental data expected to be attainable with future detector systems at the LHC. Published by the American Physical Society2024  more » « less
Award ID(s):
2209335
PAR ID:
10588569
Author(s) / Creator(s):
Publisher / Repository:
APS Journals
Date Published:
Journal Name:
Physical Review C
Volume:
110
Issue:
5
ISSN:
2469-9985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, μ Q = 0.18 ± 0.90 MeV and μ B = 0.71 ± 0.45 MeV , with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, Ω baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  2. The Collaboration reports a new determination of the jet transport parameter q ̂ in the quark-gluon plasma (QGP) using Bayesian inference, incorporating all available inclusive hadron and jet yield suppression data measured in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). This multi-observable analysis extends the previously published Bayesian inference determination of q ̂ , which was based solely on a selection of inclusive hadron suppression data. is a modular framework incorporating detailed dynamical models of QGP formation and evolution, and jet propagation and interaction in the QGP. Virtuality-dependent partonic energy loss in the QGP is modeled as a thermalized weakly coupled plasma, with parameters determined from Bayesian calibration using soft-sector observables. This Bayesian calibration of q ̂ utilizes active learning, a machine-learning approach, for efficient exploitation of computing resources. The experimental data included in this analysis span a broad range in collision energy and centrality, and in transverse momentum. In order to explore the systematic dependence of the extracted parameter posterior distributions, several different calibrations are reported, based on combined jet and hadron data; on jet or hadron data separately; and on restricted kinematic or centrality ranges of the jet and hadron data. Tension is observed in comparison of these variations, providing new insights into the physics of jet transport in the QGP and its theoretical formulation. Published by the American Physical Society2025 
    more » « less
  3. The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p T ) hadron trigger in proton-proton and central Pb-Pb collisions at s NN = 5.02 TeV . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R = 0.2 , 0.4, and 0.5 in the range 7 < p T , jet < 140 GeV / c and trigger-recoil jet azimuthal separation π / 2 < Δ φ < π . The measurements exhibit a marked medium-induced jet yield enhancement at low p T and at large azimuthal deviation from Δ φ π . The enhancement is characterized by its dependence on Δ φ , which has a slope that differs from zero by 4.7 σ . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  4. Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the nonperturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodynamic quantities and the equation of state of QCD over a wide range of isospin chemical potentials with controlled systematic uncertainties. Agreement is seen with chiral perturbation theory when the chemical potential is small. Comparison to perturbative QCD at large chemical potential allows for an estimate of the gap in the superconducting phase, and this quantity is seen to agree with perturbative determinations. Since the partition function for an isospin chemical potential μ I bounds the partition function for a baryon chemical potential μ B = 3 μ I / 2 , these calculations also provide rigorous nonperturbative QCD bounds on the symmetric nuclear matter equation of state over a wide range of baryon densities for the first time. Published by the American Physical Society2025 
    more » « less
  5. We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb-Pb collisions during Run 1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 μ b 1 of Pb-Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. It was scanned by the MoEDAL experiment using a SQUID magnetometer to search for trapped MMs. No MM signal was observed. The two distinctive features of this search are the use of a trapping volume very close to the collision point and ultrahigh magnetic fields generated during the heavy-ion run that could produce MMs via the Schwinger effect. These two advantages allowed setting the first reliable, world-leading mass limits on MMs with high magnetic charge. In particular, the established limits are the strongest available in the range between 2 and 45 Dirac units, excluding MMs with masses of up to 80 GeV at a 95% confidence level. Published by the American Physical Society2024 
    more » « less