Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Vavylonis, Dimitrios (Ed.)Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.more » « lessFree, publicly-accessible full text available December 17, 2025
-
Cells rely on their cytoskeleton for key processes including division and directed motility. Actin filaments are a primary constituent of the cytoskeleton. Although actin filaments can create a variety of network architectures linked to distinct cell functions, the microscale molecular interactions that give rise to these macroscale structures are not well understood. In this work, we investigate the microscale mechanisms that produce different branched actin network structures using an iterative classification approach. First, we employ a simple yet comprehensive agent-based model that produces synthetic actin networks with precise control over the microscale dynamics. Then we apply machine learning techniques to classify actin networks based on measurable network density and geometry, identifying key mechanistic processes that lead to particular branched actin network architectures. Extensive computational experiments reveal that the most accurate method uses a combination of supervised learning based on network density and unsupervised learning based on network symmetry. This framework can potentially serve as a powerful tool to discover the molecular interactions that produce the wide variety of actin network configurations associated with normal development as well as pathological conditions such as cancer.more » « less
-
Li, Rong (Ed.)Recent research has elucidated mechanochemical pathways of single cell polarization, but much less is known about collective motility initiation in adhesive cell groups. We used galvanotactic assays of zebrafish keratocyte cell groups, pharmacological perturbations, electric field switches, particle imaging velocimetry, and cell tracking to show that large cell groups initiate motility in minutes toward the cathode. Interestingly, while PI3K-inhibited single cells are biased toward the anode, inhibiting PI3K does not affect the cathode-directed cell group migration. We observed that control groups had the fastest cathode-migrating cell at the front, while the front cells in PI3K-inhibited groups were the slowest. Both control and PI3K-inhibited groups rapidly repolarized when the electric field direction was reversed, and the group migration continued after the electric field was switched off. Inhibiting myosin disrupted the cohesiveness of keratocyte groups and abolished the collective directionality and ability to switch direction when the electric field is reversed. Our data are consistent with a model according to which cells in the group sense the electric field individually and mechanical integration of the cells results in coherent group motility.more » « less
-
Cell migration is critical for many vital processes, such as wound healing, as well as harmful processes, such as cancer metastasis. Experiments have highlighted the diversity in migration strategies employed by cells in physiologically relevant environments. In 3D fibrous matrices and confinement between two surfaces, some cells migrate using round membrane protrusions, called blebs. In bleb-based migration, the role of substrate adhesion is thought to be minimal, and it remains unclear if a cell can migrate without any adhesion complexes. We present a 2D computational fluid-structure model of a cell using cycles of bleb expansion and retraction in a channel with several geometries. The cell model consists of a plasma membrane, an underlying actin cortex, and viscous cytoplasm. Cellular structures are immersed in viscous fluid which permeates them, and the fluid equations are solved using the method of regularized Stokeslets. Simulations show that the cell cannot effectively migrate when the actin cortex is modeled as a purely elastic material. We find that cells do migrate in rigid channels if actin turnover is included with a viscoelastic description for the cortex. Our study highlights the non-trivial relationship between cell rheology and its external environment during migration with cytoplasmic streaming.more » « less
-
Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.more » « less
-
Edelstein-Keshet, Leah (Ed.)Polarization is a crucial component in cell differentiation, development, and motility, but its details are not yet well understood. At the onset of cell locomotion, cells break symmetry to form well-defined cell fronts and rears. This polarity establishment varies across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly connected to cytoskeletal dynamics and mechanics. Theoretical models that have been developed to understand the onset of polarization have explored either signaling or mechanical pathways, yet few have explored mechanochemical mechanisms. However, many motile cells rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a stable polarized state. We propose a general mechanochemical polarization model based on coupling between a stochastic model for the segregation of signaling molecules and a simplified mechanical model for actin cytoskeleton network competition. We find that local linear coupling between minimally nonlinear signaling and cytoskeletal systems, separately not supporting stable polarization, yields a robustly polarized cell state. The model captures the essence of spontaneous polarization of neutrophils, which has been proposed to emerge due to the competition between frontness and backness pathways.more » « less
An official website of the United States government
