Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Optimal transport (OT) is a versatile framework for comparing probability measures, with many applications to statistics, machine learning and applied mathematics. However, OT distances suffer from computational and statistical scalability issues to high dimensions, which motivated the study of regularized OT methods like slicing, smoothing and entropic penalty. This work establishes a unified framework for deriving limit distributions of empirical regularized OT distances, semiparametric efficiency of the plug-in empirical estimator and bootstrap consistency. We apply the unified framework to provide a comprehensive statistical treatment of (i) average- and max-sliced $$p$$-Wasserstein distances, for which several gaps in existing literature are closed; (ii) smooth distances with compactly supported kernels, the analysis of which is motivated by computational considerations; and (iii) entropic OT, for which our method generalizes existing limit distribution results and establishes, for the first time, efficiency and bootstrap consistency. While our focus is on these three regularized OT distances as applications, the flexibility of the proposed framework renders it applicable to broad classes of functionals beyond these examples.more » « less
-
Free, publicly-accessible full text available July 8, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government

Full Text Available