skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2210379

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cellular networks have become a critical part of our networking infrastructure, enabling ubiquitous communication. However, they are likely to be under threat, and can also be the vehicle through which cellular-connected end-systems can be subject to attacks. This paper introduces our efforts to leverage data plane devices such as programmable network interface cards, switches, and end-hosts to efficiently detect attacks and ensure user privacy at terabit per second speeds. Specifically, our project designs a heterogeneous data plane framework that cohesively combines multiple data plane devices, and designs two security solutions on the framework: security monitoring and privacy protection. This paper briefly introduces the goals and initial results for the two solutions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Recent work shows that programmable switches can effectively detect attack traffic, such as denial-of-service attacks in the midst of high-volume network traffic. However, these techniques primarily rely on sampling or sketch-based data structures, which can only be used to approximate the characteristics of dominant flows in the network. As a result, such techniques are unable to effectively detect low-volume attacks that stealthily add only a few packets to the network. Our work explores how the combination of programmable switches, Smart network interface cards, and hosts can enable fine-grained analysis of every flow in a network, even those with only a small number of packets. We focus on analyzing packets at the start of each flow, as those packets often can help indicate whether a flow is benign or suspicious. We propose a unified architecture that spans the full programmable dataplane to take advantage of the strengths of each type of device. We are developing new filter data structures to efficiently track flows on the switch, dataplane-based communication protocols to quickly coordinate between devices, and caching approaches on the SmartNIC that help minimize the traffic load reaching the host. Our preliminary prototype can handle the full pipe bandwidth of 1.4 Tbps of traffic entering the Tofino switch, forward only 20 Gbps to the SmartNIC, and minimize the traffic load to 5 Gbps reaching the host due to our efficient flow filter, packet batching, and SmartNIC-based cache. 
    more » « less
  3. Recent work has demonstrated how programmable switches can effectively detect attack traffic, such as denial-of- service attacks in the midst of high-volume network traffic. However, these techniques primarily rely on sampling- or sketch- based data structures that can only be used to approximate the characteristics of dominant flows in the network. As a result, such techniques are unable to effectively detect slow attacks such as SYN port scans, SSH brute forcing, or HTTP connection exploits, which do so by stealthily adding only a few packets to the network. In this work we explore how the combination of programmable switches, Smart network interface cards (sNICs), and hosts can enable fine-grained analysis of every flow in a cloud network, even those with only a small number of packets. We focus on analyzing packets at the start of each flow, as those packets often can help indicate whether a flow is benign or suspicious, e.g., by detecting an attack which fails to complete the TCP handshake in order to waste server connection resources. Our approach leverages the high-speed processing of a programmable switch while overcoming its primary limitation - very limited memory capacity - by judiciously sending some state for processing to the sNIC or the host which typically has more memory, but lower bandwidth. Achieving this requires careful design of data structures on the switch, such as a bloom filter and flow logs, and communication protocols between the switch, sNIC , and host, to coordinate state. 
    more » « less