skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Envisioning a Unified Programmable Dataplane to Monitor Slow Attacks
Recent work shows that programmable switches can effectively detect attack traffic, such as denial-of-service attacks in the midst of high-volume network traffic. However, these techniques primarily rely on sampling or sketch-based data structures, which can only be used to approximate the characteristics of dominant flows in the network. As a result, such techniques are unable to effectively detect low-volume attacks that stealthily add only a few packets to the network. Our work explores how the combination of programmable switches, Smart network interface cards, and hosts can enable fine-grained analysis of every flow in a network, even those with only a small number of packets. We focus on analyzing packets at the start of each flow, as those packets often can help indicate whether a flow is benign or suspicious. We propose a unified architecture that spans the full programmable dataplane to take advantage of the strengths of each type of device. We are developing new filter data structures to efficiently track flows on the switch, dataplane-based communication protocols to quickly coordinate between devices, and caching approaches on the SmartNIC that help minimize the traffic load reaching the host. Our preliminary prototype can handle the full pipe bandwidth of 1.4 Tbps of traffic entering the Tofino switch, forward only 20 Gbps to the SmartNIC, and minimize the traffic load to 5 Gbps reaching the host due to our efficient flow filter, packet batching, and SmartNIC-based cache.  more » « less
Award ID(s):
2210379 2210380
PAR ID:
10632363
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
2024 IEEE 32nd International Conference on Network Protocols (ICNP) Workshop
Date Published:
ISBN:
979-8-3503-5171-2
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Charleroi, Belgium
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Recent work has demonstrated how programmable switches can effectively detect attack traffic, such as denial- of-service attacks in the midst of high-volume network traffic. However, these techniques primarily rely on sampling- or sketch- based data structures that can only be used to approximate the characteristics of dominant flows in the network. As a result, such techniques are unable to effectively detect slow attacks such as SYN port scans, SSH brute forcing, or HTTP connection exploits, which do so by stealthily adding only a few packets to the network. In this work we explore how the combination of programmable switches, Smart network interface cards (sNICs), and hosts can enable fine-grained analysis of every flow in a cloud network, even those with only a small number of packets. We focus on analyzing packets at the start of each flow, as those packets often can help indicate whether a flow is benign or suspicious, e.g., by detecting an attack which fails to complete the TCP handshake in order to waste server connection resources. Our approach leverages the high-speed processing of a programmable switch while overcoming its primary limitation – very limited memory capacity – by judiciously sending some state for processing to the sNIC or the host which typically has more memory, but lower bandwidth. Achieving this requires careful design of data structures on the switch, such as a bloom filter and flow logs, and communication protocols between the switch, sNIC, and host, to coordinate state. 
    more » « less
  2. Recent work has demonstrated how programmable switches can effectively detect attack traffic, such as denial-of- service attacks in the midst of high-volume network traffic. However, these techniques primarily rely on sampling- or sketch- based data structures that can only be used to approximate the characteristics of dominant flows in the network. As a result, such techniques are unable to effectively detect slow attacks such as SYN port scans, SSH brute forcing, or HTTP connection exploits, which do so by stealthily adding only a few packets to the network. In this work we explore how the combination of programmable switches, Smart network interface cards (sNICs), and hosts can enable fine-grained analysis of every flow in a cloud network, even those with only a small number of packets. We focus on analyzing packets at the start of each flow, as those packets often can help indicate whether a flow is benign or suspicious, e.g., by detecting an attack which fails to complete the TCP handshake in order to waste server connection resources. Our approach leverages the high-speed processing of a programmable switch while overcoming its primary limitation - very limited memory capacity - by judiciously sending some state for processing to the sNIC or the host which typically has more memory, but lower bandwidth. Achieving this requires careful design of data structures on the switch, such as a bloom filter and flow logs, and communication protocols between the switch, sNIC , and host, to coordinate state. 
    more » « less
  3. Despite advances in network security, attacks targeting mission critical systems and applications remain a significant problem for network and datacenter providers. Existing telemetry platforms detect volumetric attacks at terabit scales using approximation techniques and coarse grain analysis. However, the prevalence of low and slow attacks that require very little bandwidth, makes flow-state tracking critical to overall attack mitigation. Traffic queries deployed on network switches are often limited by hardware constraints, preventing them from carrying out flow tracking features required to detect stealthy attacks. Such attacks can go undetected in the midst of high traffic volumes. We design SmartWatch, a novel flow state tracking and flow logging system at line rate, using SmartNICs to optimize performance and simultaneously detect a number of stealthy attacks. SmartWatch leverages advances in switch based network telemetry platforms to process the bulk of the traffic and only forward suspicious traffic subsets to the SmartNIC. The programmable network switches perform coarse-grained traffic analysis while the SmartNIC conducts the finer-grained analysis which involves additional processing of the packet as a 'bump-in-the-wire'. A control loop between the SmartNIC and programmable switch tunes the queries performed in the switch to direct the most appropriate traffic subset to the SmartNIC. SmartWatch's cooperative monitoring approach yields 2.39 times better detection rate compared to existing platforms deployed on programmable switches. SmartWatch can detect covert timing channels and perform website fingerprinting more efficiently compared to standalone programmable switch solutions, relieving switch memory and control-plane processor resources. Compared to host-based approaches, SmartWatch can reduce the packet processing latency by 72.32%. 
    more » « less
  4. A programmable data plane composed of P4 switches, smartNICs, and hosts running software network functions can provide new opportunities for network security. Much work in this area has focused on monitoring high volume traffic such as denial of service attacks or heavy-hitter detection. However, slow attacks that carefully use small amounts of traffic to have a highly negative effect are much more challenging to detect since they typically require fine-grained analysis of all flows. Our work is exploring how a programmable data plane can provide accurate attack detection at nearly line rate while overcoming challenges such as the limited memory space available on network devices. 
    more » « less
  5. The emergence of programmable switches offers a new opportunity to revisit ISP-scale defenses for volumetric DDoS attacks. In theory, these can offer better cost vs. performance vs. flexibility trade-offs relative to proprietary hardware and virtual appliances. However, the ISP setting creates unique challenges in this regard---we need to run a broad spectrum of detection and mitigation functions natively on the programmable switch hardware and respond to dynamic adaptive attacks at scale. Thus, prior efforts in using programmable switches that assume out-of-band detection and/or use switches merely as accelerators for specific tasks are no longer sufficient, and as such, this potential remains unrealized. To tackle these challenges, we design and implement Jaqen, a switch-native approach for volumetric DDoS defense that can run detection and mitigation functions entirely inline on switches, without relying on additional data plane hardware. We design switch-optimized, resource-efficient detection and mitigation building blocks. We design a flexible API to construct a wide spectrum of best-practice (and future) defense strategies that efficiently use switch capabilities. We build a network-wide resource manager that quickly adapts to the attack posture changes. Our experiments show that Jaqen is orders of magnitude more performant than existing systems: Jaqen can handle large-scale hybrid and dynamic attacks within seconds, and mitigate them effectively at high line-rates (380 Gbps). 
    more » « less