skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2210506

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since its development, the minimax framework has been one of the cornerstones of theoretical statistics, and has contributed to the popularity of many well-known estimators, such as the regularized M-estimators for high-dimensional problems. In this paper, we will first show through the example of sparse Gaussian sequence model, that the theoretical results under the classical minimax framework are insufficient for explaining empirical observations. In particular, both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. The first contribution of this paper is to demonstrate that this issue can be resolved if the signal-to-noise ratio is taken into account in the construction of the parameter space. We call the resulting minimax framework the signal-to-noise ratio aware minimaxity. The second contribution of this paper is to showcase how one can use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk and discover minimax estimators. The theoretical findings obtained from this refined minimax framework provide new insights and practical guidance for the estimation of sparse signals. 
    more » « less