skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Signal-to-Noise Ratio Aware Minimaxity and Higher-Order Asymptotics
Since its development, the minimax framework has been one of the cornerstones of theoretical statistics, and has contributed to the popularity of many well-known estimators, such as the regularized M-estimators for high-dimensional problems. In this paper, we will first show through the example of sparse Gaussian sequence model, that the theoretical results under the classical minimax framework are insufficient for explaining empirical observations. In particular, both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. The first contribution of this paper is to demonstrate that this issue can be resolved if the signal-to-noise ratio is taken into account in the construction of the parameter space. We call the resulting minimax framework the signal-to-noise ratio aware minimaxity. The second contribution of this paper is to showcase how one can use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk and discover minimax estimators. The theoretical findings obtained from this refined minimax framework provide new insights and practical guidance for the estimation of sparse signals.  more » « less
Award ID(s):
2210505 2210506
PAR ID:
10520300
Author(s) / Creator(s):
; ;
Publisher / Repository:
Institute of Electrical and Electronics Engineers (IEEE)
Date Published:
Journal Name:
IEEE Transactions on Information Theory
Volume:
70
Issue:
5
ISSN:
0018-9448
Page Range / eLocation ID:
3538 to 3566
Subject(s) / Keyword(s):
Minimaxity signal-to-noise ratio sparsity soft thresholding hard thresholding linear shrinkage higher-order asymptotics Gaussian sequence model.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Baseband processing algorithms often require knowledge of the noise power, signal power, or signal-to-noise ratio (SNR). In practice, these parameters are typically unknown and must be estimated. Furthermore, the mean-square error (MSE) is a desirable metric to be minimized in a variety of estimation and signal recovery algorithms. However, the MSE cannot directly be used as it depends on the true signal that is generally unknown to the estimator. In this paper, we propose novel blind estimators for the average noise power, average receive signal power, SNR, and MSE. The proposed estimators can be computed at low complexity and solely rely on the large-dimensional and sparse nature of the processed data. Our estimators can be used (i) to quickly track some of the key system parameters while avoiding additional pilot overhead, (ii) to design low-complexity nonparametric algorithms that require such quantities, and (iii) to accelerate more sophisticated estimation or recovery algorithms. We conduct a theoretical analysis of the proposed estimators for a Bernoulli complex Gaussian (BCG) prior, and we demonstrate their efficacy via synthetic experiments. We also provide three application examples that deviate from the BCG prior in millimeter-wave multi-antenna and cell-free wireless systems for which we develop nonparametric denoising algorithms that improve channel-estimation accuracy with a performance comparable to denoisers that assume perfect knowledge of the system parameters. 
    more » « less
  2. Abstract In this paper, we propose a new framework to construct confidence sets for a $$d$$-dimensional unknown sparse parameter $${\boldsymbol \theta }$$ under the normal mean model $${\boldsymbol X}\sim N({\boldsymbol \theta },\sigma ^{2}\bf{I})$$. A key feature of the proposed confidence set is its capability to account for the sparsity of $${\boldsymbol \theta }$$, thus named as sparse confidence set. This is in sharp contrast with the classical methods, such as the Bonferroni confidence intervals and other resampling-based procedures, where the sparsity of $${\boldsymbol \theta }$$ is often ignored. Specifically, we require the desired sparse confidence set to satisfy the following two conditions: (i) uniformly over the parameter space, the coverage probability for $${\boldsymbol \theta }$$ is above a pre-specified level; (ii) there exists a random subset $$S$$ of $$\{1,...,d\}$$ such that $$S$$ guarantees the pre-specified true negative rate for detecting non-zero $$\theta _{j}$$’s. To exploit the sparsity of $${\boldsymbol \theta }$$, we allow the confidence interval for $$\theta _{j}$$ to degenerate to a single point 0 for any $$j\notin S$$. Under this new framework, we first consider whether there exist sparse confidence sets that satisfy the above two conditions. To address this question, we establish a non-asymptotic minimax lower bound for the non-coverage probability over a suitable class of sparse confidence sets. The lower bound deciphers the role of sparsity and minimum signal-to-noise ratio (SNR) in the construction of sparse confidence sets. Furthermore, under suitable conditions on the SNR, a two-stage procedure is proposed to construct a sparse confidence set. To evaluate the optimality, the proposed sparse confidence set is shown to attain a minimax lower bound of some properly defined risk function up to a constant factor. Finally, we develop an adaptive procedure to the unknown sparsity. Numerical studies are conducted to verify the theoretical results. 
    more » « less
  3. null (Ed.)
    Driven by a wide range of applications, several principal subspace estimation problems have been studied individually under different structural constraints. This paper presents a uni- fied framework for the statistical analysis of a general structured principal subspace estima- tion problem which includes as special cases sparse PCA/SVD, non-negative PCA/SVD, subspace constrained PCA/SVD, and spectral clustering. General minimax lower and up- per bounds are established to characterize the interplay between the information-geometric complexity of the constraint set for the principal subspaces, the signal-to-noise ratio (SNR), and the dimensionality. The results yield interesting phase transition phenomena concern- ing the rates of convergence as a function of the SNRs and the fundamental limit for consistent estimation. Applying the general results to the specific settings yields the mini- max rates of convergence for those problems, including the previous unknown optimal rates for sparse SVD, non-negative PCA/SVD and subspace constrained PCA/SVD. 
    more » « less
  4. We propose blind estimators for the average noise power, receive signal power, signal-to-noise ratio (SNR), and mean-square error (MSE), suitable for multi-antenna millimeter wave (mmWave) wireless systems. The proposed estimators can be computed at low complexity and solely rely on beamspace sparsity, i.e., the fact that only a small number of dominant propagation paths exist in typical mmWave channels. Our estimators can be used (i) to quickly track some of the key quantities in multi-antenna mmWave systems while avoiding additional pilot overhead and (ii) to design efficient nonparametric algorithms that require such quantities. We provide a theoretical analysis of the proposed estimators, and we demonstrate their efficacy via synthetic experiments and using a nonparametric channel-vector denoising task with realistic multi-antenna mmWave channels. 
    more » « less
  5. null (Ed.)
    In this article, we provide closed-form approximations of log-likelihood ratio (LLR) values for direct sequence spread spectrum (DS-SS) systems over three particular scenarios, which are commonly found in the Global Navigation Satellite System (GNSS) environment. Those scenarios are the open sky with smooth variation of the signal-to-noise ratio (SNR), the additive Gaussian interference, and pulsed jamming. In most of the current communications systems, block-wise estimators are considered. However, for some applications such as GNSSs, symbol-wise estimators are available due to the low data rate. Usually, the noise variance is considered either perfectly known or available through symbol-wise estimators, leading to possible mismatched demodulation, which could induce errors in the decoding process. In this contribution, we first derive two closed-form expressions for LLRs in additive white Gaussian and Laplacian noise channels, under noise uncertainty, based on conjugate priors. Then, assuming those cases where the statistical knowledge about the estimation error is characterized by a noise variance following an inverse log-normal distribution, we derive the corresponding closed-form LLR approximations. The relevance of the proposed expressions is investigated in the context of the GPS L1C signal where the clock and ephemeris data (CED) are encoded with low-density parity-check (LDPC) codes. Then, the CED is iteratively decoded based on the belief propagation (BP) algorithm. Simulation results show significant frame error rate (FER) improvement compared to classical approaches not accounting for such uncertainty. 
    more » « less