Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The use of antibiotics to treat bacterial infections often imposes strong selection for antibiotic resistance. However, the prevalence of antibiotic resistance varies greatly across different combinations of pathogens and drugs. What underlies this variation? Systematic reviews, meta-analyses, and literature surveys capable of integrating data across many studies have tried to answer this question, but the vast majority of these studies have focused only on cases where resistance is common or problematic. Yet much could presumably be learned from the cases where resistance is infrequent or absent. Here we conducted a literature survey and a systematic review to study the evolution of antibiotic resistance across a wide range of pathogen-by-drug combinations (57 pathogens and 53 antibiotics from 15 drug classes). Using Akaike information criterion-based model selection and model-averaged parameter estimation we explored 14 different factors posited to be associated with resistance evolution. We find that the most robust predictors of high resistance are nosocomial transmission (i.e., hospital-acquired pathogens) and indirect transmission (e.g., vector-, water-, air-, or vehicle-borne pathogens). While the former was to be expected based on prior studies, the positive correlation between high resistance frequencies and indirect transmission is, to our knowledge, a novel insight. The most robust predictor of low resistance is zoonosis from wild animal reservoirs. We also found partial support that resistance was associated with pathogen type, horizontal gene transfer, commensalism, and human-to-human transmission. We did not find support for correlations between resistance and environmental reservoirs, mechanisms of drug action, and global drug use. This work explores the relative explanatory power of various pathogen and drug factors on resistance evolution, which is necessary to identify priority targets of stewardship efforts to slow the spread of drug-resistant pathogens.more » « less
-
Free, publicly-accessible full text available June 1, 2026
-
Lau, Eric HY (Ed.)The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected, can fundamentally alter disease dynamics and public health responses, for example, by changing the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in susceptibility given contact by using contact tracing data, which are typically collected early in the course of an outbreak. This approach provides the capability, given sufficient data, to estimate and account for the effects of this heterogeneity before they become apparent during an epidemic. It additionally provides the capability to analyze the wealth of contact tracing data available for previous epidemics and estimate heterogeneity in susceptibility for disease systems in which it has never been estimated previously. The premise of our approach is that highly susceptible individuals become infected more often than less susceptible individuals, and so individuals not infected after appearing in contact networks should be less susceptible than average. This change in susceptibility can be detected and quantified when individuals show up in a second contact network after not being infected in the first. To develop our method, we simulated contact tracing data from artificial populations with known levels of heterogeneity in susceptibility according to underlying discrete or continuous distributions of susceptibilities. We analyzed these data to determine the parameter space under which we are able to detect heterogeneity and the accuracy with which we are able to estimate it. We found that our power to detect heterogeneity increases with larger sample sizes, greater heterogeneity, and intermediate fractions of contacts becoming infected in the discrete case or greater fractions of contacts becoming infected in the continuous case. We also found that we are able to reliably estimate heterogeneity and disease dynamics. Ultimately, this means that contact tracing data alone are sufficient to detect and quantify heterogeneity in susceptibility.more » « less
-
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans . We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.more » « less
An official website of the United States government
