Abstract Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
more »
« less
Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans . We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
more »
« less
- PAR ID:
- 10428254
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1983
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biparental sex is widespread in nature, yet costly relative to uniparental reproduction. It is generally unclear why self-fertilizing or asexual lineages do not readily invade outcrossing populations. The Red Queen hypothesis predicts that coevolving parasites can prevent self-fertilizing or asexual lineages from invading outcrossing host populations. However, only highly virulent parasites are predicted to maintain outcrossing, which may limit the general applicability of the Red Queen hypothesis. Here, we tested whether the ability of coevolving parasites to prevent invasion of self-fertilization within outcrossing host populations was dependent on parasite virulence. We introduced wild-type Caenorhabditis elegans hermaphrodites, capable of both self-fertilization and outcrossing, into C. elegans populations fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed for 24 host generations to one of four strains of Serratia marcescens parasites that varied in virulence, under three treatments: a heat-killed (control, noninfectious) parasite treatment, a fixed-genotype (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. As predicted, self-fertilization invaded C. elegans host populations in the control and fixed-parasite treatments, regardless of parasite virulence. In the copassaged treatment, selfing invaded host populations coevolving with low- to mid-virulence strains, but remained rare in hosts coevolving with highly virulent bacterial strains. Therefore, we found that only highly virulent coevolving parasites can impede the invasion of selfing.more » « less
-
Abstract Many species use dormant stages for habitat selection by tying recovery to informative external cues. Other species have an undiscerning strategy in which they recover randomly despite having advanced sensory systems. We investigated whether elements of a species' habitat structure and life history can bar it from developing a discerning recovery strategy. The nematodeCaenorhabditis eleganshas a dormant stage called the dauer larva that disperses between habitat patches. On one hand,C. eleganscolonization success is profoundly influenced by the bacteria found in its habitat patches, so we might expect this to select for a discerning strategy. On the other hand,C. elegans' habitat structure and life history suggest that there is no fitness benefit to varying recovery, which might select for an undiscerning strategy. We exposed dauers of three genotypes to a range of bacteria acquired from the worms' natural habitat. We found thatC. elegansdauers recover in all conditions but increase recovery on certain bacteria depending on the worm's genotype, suggesting a combination of undiscerning and discerning strategies. Additionally, the worms' responses did not match the bacteria's objective quality, suggesting that their decision is based on other characteristics.more » « less
-
Abstract Pathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross‐species spillover transmission. Using a rodent–ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent–ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high‐consequence zoonotic pathogen with documented animal‐to‐animal, animal‐to‐human, and human‐to‐human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus.more » « less
-
Abstract BackgroundThe term virus ‘spillover’ embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place. Main textThe scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological—natural and expansional—overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables. ConclusionsThe continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe. Graphical Abstract:more » « less
An official website of the United States government

