skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Isotopic fractionation has been linked to the lattice vibrations of materials through their phonon spectra. The Lamb-Mössbauer factor (fLM) has the potential to provide information about the lattice vibrations in materials. We constrain the temperature evolution of the fLM of γ- and ε-Fe at in situ high-P-T conditions between 1650 K and the melting point. We find that the vibrations of γ- and ε-Fe can be described using a quasiharmonic model with a pressure- and temperature-dependent Debye temperature computed from the measured fLM. From the Debye temperature, we derive the equilibrium isotopic fractionation β-factor of iron. Our results show that the quasiharmonic behavior of metallic iron would lower the value of lnβFe57/54 by 0.1‰ at 1600–2800 K and 50 GPa when compared to the extrapolation of room temperature nuclear resonant inelastic X-ray scattering data. Our study suggests that anharmonicity may be more prevalent in Fe metal than in lower mantle minerals at 2800 K and 50 GPa, a relevant condition for the core formation, and the silicate mantle may be isotopically heavy in iron. 
    more » « less