skip to main content


Title: Measurements of the Lamb-Mössbauer factor at simultaneous high-pressure-temperature conditions and estimates of the equilibrium isotopic fractionation of iron
Abstract Isotopic fractionation has been linked to the lattice vibrations of materials through their phonon spectra. The Lamb-Mössbauer factor (fLM) has the potential to provide information about the lattice vibrations in materials. We constrain the temperature evolution of the fLM of γ- and ε-Fe at in situ high-P-T conditions between 1650 K and the melting point. We find that the vibrations of γ- and ε-Fe can be described using a quasiharmonic model with a pressure- and temperature-dependent Debye temperature computed from the measured fLM. From the Debye temperature, we derive the equilibrium isotopic fractionation β-factor of iron. Our results show that the quasiharmonic behavior of metallic iron would lower the value of lnβFe57/54 by 0.1‰ at 1600–2800 K and 50 GPa when compared to the extrapolation of room temperature nuclear resonant inelastic X-ray scattering data. Our study suggests that anharmonicity may be more prevalent in Fe metal than in lower mantle minerals at 2800 K and 50 GPa, a relevant condition for the core formation, and the silicate mantle may be isotopically heavy in iron.  more » « less
Award ID(s):
2212068
NSF-PAR ID:
10391039
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
107
Issue:
3
ISSN:
0003-004X
Page Range / eLocation ID:
421 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

     
    more » « less
  2. Abstract

    Iron‐dominant metallic phases are likely the primary hosts for nitrogen in the reduced deep Earth, hence the storage of nitrogen in the lower mantle and the core is governed by the behavior of the Fe‐N‐C system at high temperatures and pressures. In this study, phase transitions and thermoelastic properties of iron carbonitrides were investigated at high pressure‐temperature conditions by diamond anvil cell experiments and first‐principles calculations. Experimental data revealed no phase transition inε‐type Fe4(N0.6C0.4) or Fe7(N0.75C0.25)3up to 60 GPa at room temperature. At high temperature, Fe7(N0.75C0.25)3transforms into the Fe3C‐type phase at ∼27 GPa, and then into the Fe7C3‐type phase at ∼45 GPa, which is also corroborated by our theoretical calculations. We found that the phase stability of iron carbonitrides mainly depends on the N/C ratio, and the elastic properties of iron carbonitrides are dominantly affected by the Fe/(N+C) ratio. Iron carbonitrides with diverse structures may be the main host for nitrogen in the deep mantle. Some iron carbonitride inclusions in lower mantle diamonds could be the residue of the primordial mantle or originate from subducted nitrogen‐bearing materials, rather than iron‐enriched phases of the outer core. In addition, our experiments confirmed the existence of Fe7C3‐type Fe7C3‐Fe7N3solid solutions above 40 GPa. Fe7C3‐type Fe7(C, N)3has comparable density and thermoelastic properties to its isostructural endmembers and may be a promising candidate constituent of the Earth's inner core.

     
    more » « less
  3. Abstract

    Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yieldsV0 = 83.29 ± 0.03 (Å3),K0 = 232 ± 9 GPa,K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV0 = 54.82 ± 0.02 (Å3),K0 = 152 ± 2 GPa,K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores.

     
    more » « less
  4. Abstract

    We present ab initio (LDA + Usc) studies of high‐temperature and high‐pressure elastic properties of pure as well as iron‐bearing (ferrous, Fe2+, and ferric, Fe3+) and aluminum‐bearing MgSiO3postperovskite, the likely dominant phase in the deep lower mantle of the Earth. Thermal effects are addressed within the quasiharmonic approximation by combining vibrational density of states and static elastic coefficients. Aggregate elastic moduli and sound velocities for the Mg end members are successfully compared with scarce experimental data available. Effects of iron (Fe) and aluminum (Al) substitutions on elastic properties and their pressure and temperature dependence have been thoroughly investigated. At the observed perovskite to postperovskite transition (P = 125 GPa andT = 2,500 K), compressional and shear velocities increase by 0–1% and 1.5–3.75%, respectively. This observation is consistent with some seismic studies of the Ddiscontinuity beneath the Caribbean, which suggests that our robust estimates of elastic properties of the postperovskite phase will be very helpful to understand lateral velocity variations in the deep lower mantle region and to constrain its composition and thermal structure.

     
    more » « less
  5. null (Ed.)
    Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle. 
    more » « less