Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a Monte Carlo method for computing derivatives of the solution to a partial differential equation (PDE) with respect to problem parameters (such as domain geometry or boundary conditions). Derivatives can be evaluated at arbitrary points, without performing a global solve or constructing a volumetric grid or mesh. The method is hence well suited to inverse problems with complex geometry, such as PDE-constrained shape optimization. Like other walk on spheres (WoS) algorithms, our method is trivial to parallelize, and is agnostic to boundary representation (meshes, splines, implicit surfaces, etc.), supporting large topological changes. We focus in particular on screened Poisson equations, which model diverse problems from scientific and geometric computing. As in differentiable rendering, we jointly estimate derivatives with respect to all parameters—hence, cost does not grow significantly with parameter count. In practice, even noisy derivative estimates exhibit fast, stable convergence for stochastic gradient-based optimization, as we show through examples from thermal design, shape from diffusion, and computer graphics.more » « lessFree, publicly-accessible full text available December 5, 2025
-
Numerous scientific and engineering applications require solutions to boundary value problems (BVPs) involving elliptic partial differential equations, such as the Laplace or Poisson equations, on geometrically intricate domains. We develop a Monte Carlo method for solving such BVPs with arbitrary first-order linear boundary conditions---Dirichlet, Neumann, and Robin. Our method directly generalizes thewalk on stars (WoSt)algorithm, which previously tackled only the first two types of boundary conditions, with a few simple modifications. Unlike conventional numerical methods, WoSt does not need finite element meshing or global solves. Similar to Monte Carlo rendering, it instead computes pointwise solution estimates by simulating random walks along star-shaped regions inside the BVP domain, using efficient ray-intersection and distance queries. To ensure WoSt producesbounded-varianceestimates in the presence of Robin boundary conditions, we show that it is sufficient to modify how WoSt selects the size of these star-shaped regions. Our generalized WoSt algorithm reduces estimation error by orders of magnitude relative to alternative grid-free methods such as thewalk on boundaryalgorithm. We also developbidirectionalandboundary value cachingstrategies to further reduce estimation error. Our algorithm is trivial to parallelize, scales sublinearly with increasing geometric detail, and enables progressive and view-dependent evaluation.more » « less
-
We introduce a method for approximating the signed distance function (SDF) of geometry corrupted by holes, noise, or self-intersections. The method implicitly defines a completed version of the shape, rather than explicitly repairing the given input. Our starting point is a modified version of theheat methodfor geodesic distance, which diffuses normal vectors rather than a scalar distribution. This formulation provides robustness akin togeneralized winding numbers (GWN), but provides distance function rather than just an inside/outside classification. Our formulation also offers several features not common to classic distance algorithms, such as the ability to simultaneously fit multiple level sets, a notion of distance for geometry that does not topologically bound any region, and the ability to mix and match signed and unsigned distance. The method can be applied in any dimension and to any spatial discretization, including triangle meshes, tet meshes, point clouds, polygonal meshes, voxelized surfaces, and regular grids. We evaluate the method on several challenging examples, implementing normal offsets and other morphological operations directly on imperfect curve and surface data. In many cases we also obtain an inside/outside classification dramatically more robust than the one obtained provided by GWN.more » « less
-
Sphere tracingis a fast and high-quality method for visualizing surfaces encoded by signed distance functions (SDFs). We introduce a similar method for a completely different class of surfaces encoded byharmonic functions, opening up rich new possibilities for visual computing. Our starting point is similar in spirit to sphere tracing: using conservativeHarnack boundson the growth of harmonic functions, we develop aHarnack tracingalgorithm for visualizing level sets of harmonic functions, including those that are angle-valued and exhibit singularities. The method takes much larger steps than naïve ray marching, avoids numerical issues common to generic root finding methods and, like sphere tracing, needs only perform pointwise evaluation of the function at each step. For many use cases, the method is fast enough to run real time in a shader program. We use it to visualize smooth surfaces directly from point clouds (via Poisson surface reconstruction) or polygon soup (via generalized winding numbers) without linear solves or mesh extraction. We also use it to visualize nonplanar polygons (possibly with holes), surfaces from architectural geometry, mesh exoskeletons, and key mathematical objects including knots, links, spherical harmonics, and Riemann surfaces. Finally we show that, at least in theory, Harnack tracing provides an alternative mechanism for visualizing arbitrary implicit surfaces.more » « less
-
This paper describes a method for fast simplification of surface meshes. Whereas past methods focus on visual appearance, our goal is to solve equations on the surface. Hence, rather than approximate the extrinsic geometry, we construct a coarseintrinsic triangulationof the input domain. In the spirit of thequadric error metric (QEM), we perform greedy decimation while agglomerating global information about approximation error. In lieu of extrinsic quadrics, however, we store intrinsic tangent vectors that track how far curvature drifts during simplification. This process also yields a bijective map between the fine and coarse mesh, and prolongation operators for both scalar- and vector-valued data. Moreover, we obtain hard guarantees on element quality via intrinsic retriangulation---a feature unique to the intrinsic setting. The overall payoff is a black box approach to geometry processing, which decouples mesh resolution from the size of matrices used to solve equations. We show how our method benefits several fundamental tasks, including geometric multigrid, all-pairs geodesic distance, mean curvature flow, geodesic Voronoi diagrams, and the discrete exponential map.more » « less
-
Grid-free Monte Carlo methods such aswalk on spherescan be used to solve elliptic partial differential equations without mesh generation or global solves. However, such methods independently estimate the solution at every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic problems. We propose a fast caching strategy which first estimates solution values and derivatives at randomly sampled points along the boundary of the domain (or a local region of interest). These cached values then provide cheap, output-sensitive evaluation of the solution (or its gradient) at interior points, via a boundary integral formulation. Unlike classic boundary integral methods, our caching scheme introduces zero statistical bias and does not require a dense global solve. Moreover we can handle imperfect geometry (e.g., with self-intersections) and detailed boundary/source terms without repairing or resampling the boundary representation. Overall, our scheme is similar in spirit tovirtual point lightmethods from photorealistic rendering: it suppresses the typical salt-and-pepper noise characteristic of independent Monte Carlo estimates, while still retaining the many advantages of Monte Carlo solvers: progressive evaluation, trivial parallelization, geometric robustness,etc.We validate our approach using test problems from visual and geometric computing.more » « less
-
In the plane, thewinding numberis the number of times a curve wraps around a given point. Winding numbers are a basic component of geometric algorithms such as point-in-polygon tests, and their generalization to data with noise or topological errors has proven valuable for geometry processing tasks ranging from surface reconstruction to mesh booleans. However, standard definitions do not immediately apply on surfaces, where not all curves bound regions. We develop a meaningful generalization, starting with the well-known relationship between winding numbers and harmonic functions. By processing the derivatives of such functions, we can robustly filter out components of the input that do not bound any region. Ultimately, our algorithm yields (i) a closed, completed version of the input curves, (ii) integer labels for regions that are meaningfully bounded by these curves, and (iii) the complementary curves that do not bound any region. The main computational cost is solving a standard Poisson equation, or for surfaces with nontrivial topology, a sparse linear program. We also introduce special basis functions to represent singularities that naturally occur at endpoints of open curves.more » « less
-
Grid-free Monte Carlo methods based on thewalk on spheres (WoS)algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce thewalk on stars (WoSt)algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS withstar-shapeddomains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail.more » « less
An official website of the United States government
