Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A standard question in real algebraic geometry is to compute the number of connected components of a real algebraic variety in affine space. This manuscript provides algorithms for computing the number of connected components, the Euler characteristic, and deciding the connectivity between two points for a smooth manifold arising as the complement of a real hypersurface of a real algebraic variety. When considering the complement of the set of singular points of a real algebraic variety, this yields an approach for determining smooth connectivity in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real algebraic variety inspired by a method proposed by Hong, Rohal, Safey El Din, and Schost for complements of real hypersurfaces. Several examples are included to demonstrate the approach.more » « less
-
Free, publicly-accessible full text available July 1, 2027
-
Free, publicly-accessible full text available May 1, 2027
-
Newton's method is a classical iterative approach for computing solutions to nonlinear equations. To overcome some of its drawbacks, one often considers a continuous adjoint form of Newton's method. This paper investigates the geometric structure of the trajectories produced by the continuous adjoint Newton's method for bivariate quadratics, a system of two quadratic polynomials in two variables, via eigenanalysis at its equilibrium points. The main ideas are illustrated using plots generated by a Maple program.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available March 27, 2026
An official website of the United States government
