skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smooth connectivity in real algebraic varieties
Abstract A standard question in real algebraic geometry is to compute the number of connected components of a real algebraic variety in affine space. This manuscript provides algorithms for computing the number of connected components, the Euler characteristic, and deciding the connectivity between two points for a smooth manifold arising as the complement of a real hypersurface of a real algebraic variety. When considering the complement of the set of singular points of a real algebraic variety, this yields an approach for determining smooth connectivity in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real algebraic variety inspired by a method proposed by Hong, Rohal, Safey El Din, and Schost for complements of real hypersurfaces. Several examples are included to demonstrate the approach.  more » « less
Award ID(s):
2331400 2331401 2212461 1813340
PAR ID:
10547139
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Numerical Algorithms
Volume:
100
Issue:
1
ISSN:
1017-1398
Format(s):
Medium: X Size: p. 63-84
Size(s):
p. 63-84
Sponsoring Org:
National Science Foundation
More Like this
  1. Many algorithms for determining properties of semi-algebraic sets rely upon the ability to compute smooth points [1]. We present a simple procedure based on computing the critical points of some well-chosen function that guarantees the computation of smooth points in each connected bounded component of a real atomic semi-algebraic set. Our technique is intuitive in principal, performs well on previously difficult examples, and is straightforward to implement using existing numerical algebraic geometry software. The practical efficiency of our approach is demonstrated by solving a conjecture on the number of equilibria of the Kuramoto model for then= 4 case. We also apply our method to design an efficient algorithm to compute the real dimension of algebraic sets, the original motivation for this research. 
    more » « less
  2. Abstract For a simple, simply connected complex affine algebraic group 𝐺, we prove the existence of a flat projective connection on the bundle of nonabelian theta functions on the moduli spaces of semistable parabolic 𝐺-bundles for families of smooth projective curves with marked points. 
    more » « less
  3. Abstract Changes in environmental or system parameters often drive major biological transitions, including ecosystem collapse, disease outbreaks, and tumor development. Analyzing the stability of steady states in dynamical systems provides critical insight into these transitions. This paper introduces an algebraic framework for analyzing the stability landscapes of ecological models defined by systems of first-order autonomous ordinary differential equations with polynomial or rational rate functions. Using tools from real algebraic geometry, we characterize parameter regions associated with steady-state feasibility and stability via three key boundaries: singular, stability (Routh-Hurwitz), and coordinate boundaries. With these boundaries in mind, we employ routing functions to compute the connected components of parameter space in which the number and type of stable steady states remain constant, revealing the stability landscape of these ecological models. As case studies, we revisit the classical Levins-Culver competition-colonization model and a recent model of coral-bacteria symbioses. In the latter, our method uncovers complex stability regimes, including regions supporting limit cycles, that are inaccessible via traditional techniques. These results demonstrate the potential of our approach to inform ecological theory and intervention strategies in systems with nonlinear interactions and multiple stable states. 
    more » « less
  4. Abstract A Kodaira fibration is a non‐isotrivial fibration from a smooth algebraic surfaceSto a smooth algebraic curveBsuch that all fibers are smooth algebraic curves of genusg. Such fibrations arise as complete curves inside the moduli space of genusgalgebraic curves. We investigate here the possible connected monodromy groups of a Kodaira fibration in the case and classify which such groups can arise from a Kodaira fibration obtained as a general complete intersection curve inside a subvariety of parametrizing curves whose Jacobians have extra endomorphisms. 
    more » « less
  5. We initiate the study of a class of real plane algebraic curves which we callexpressive. These are the curves whose defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of a curve. This concept can be viewed as a global version of the notion of a real morsification of an isolated plane curve singularity. We prove that a plane curve  C C is expressive if (a) each irreducible component of  C C can be parametrized by real polynomials (either ordinary or trigonometric), (b) all singular points of C C in the affine plane are ordinary hyperbolic nodes, and (c) the set of real points of C C in the affine plane is connected. Conversely, an expressive curve with real irreducible components must satisfy conditions (a)–(c), unless it exhibits some exotic behaviour at infinity. We describe several constructions that produce expressive curves, and discuss a large number of examples, including: arrangements of lines, parabolas, and circles; Chebyshev and Lissajous curves; hypotrochoids and epitrochoids; and much more. 
    more » « less