skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2212881

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article shows that for a large class of discrete periodic Schrödinger operators, most wavefunctions resemble Bloch states. More precisely, we prove quantum ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This means that most eigenfunctions of H on large finite periodic graphs are equidistributed in some sense, hence delocalized. Our results cover the adjacency matrix on Z^d, the triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger operators on Z^d. The theorem applies more generally to any periodic Schrödinger operator satisfying an assumption on the Floquet eigenvalues. 
    more » « less
  2. Let G be a random d-regular graph on n vertices. We prove that for every constant a>0, with high probability every eigenvector of the adjacency matrix of G with eigenvalue sufficiently small has Omega(n/polylog(n)) nodal domains. 
    more » « less