Abstract We study discrete magnetic random Schrödinger operators on the square and honeycomb lattice. For the non-random magnetic operator on the hexagonal lattice with any rational magnetic flux, we show that the middle two dispersion surfaces exhibit Dirac cones. We then derive an asymptotic expansion for the density of states on the honeycomb lattice for oscillations of arbitrary rational magnetic flux. This allows us, as a corollary, to rigorously study the quantum Hall effect and conclude dynamical delocalization close to the conical point under disorder. We obtain similar results for the discrete random Schrödinger operator on the $$\mathbb Z^2$$-lattice with weak magnetic fields, close to the bottom and top of its spectrum.
more »
« less
Quantum Ergodicity for Periodic Graphs
This article shows that for a large class of discrete periodic Schrödinger operators, most wavefunctions resemble Bloch states. More precisely, we prove quantum ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This means that most eigenfunctions of H on large finite periodic graphs are equidistributed in some sense, hence delocalized. Our results cover the adjacency matrix on Z^d, the triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger operators on Z^d. The theorem applies more generally to any periodic Schrödinger operator satisfying an assumption on the Floquet eigenvalues.
more »
« less
- Award ID(s):
- 2212881
- PAR ID:
- 10471060
- Publisher / Repository:
- Communications in Mathematical Physics
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 403
- Issue:
- 3
- ISSN:
- 0010-3616
- Page Range / eLocation ID:
- 1477 to 1509
- Subject(s) / Keyword(s):
- mathematical physics spectral theory spectral graph theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic setting, specifically on tori {\mathbb{T}^{d}}, where {d\geq 3}. The results hold for both rational and irrational tori, and for small interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger operators on periodic domains, as developed in [J. Bourgain and C. Demeter,The proof of the l^{2}decoupling conjecture,Ann. of Math. (2) 182 2015, 1, 351–389]. As a comparison, this result can be regarded as a periodic analogue of [Y. Hong,Strichartz estimates forN-body Schrödinger operators with small potential interactions,Discrete Contin. Dyn. Syst. 37 2017, 10, 5355–5365] though we do not use the same perturbation method. We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz estimate.more » « less
-
Abstract This paper investigates uniqueness results for perturbed periodic Schrödinger operators on . Specifically, we consider operators of the form , where Δ is the discrete Laplacian, is a periodic potential, and represents a decaying impurity. We establish quantitative conditions under which the equation , for , admits only the trivial solution . Key applications include the absence of embedded eigenvalues for operators with impurities decaying faster than any exponential function and the determination of sharp decay rates for eigenfunctions. Our findings extend previous works by providing precise decay conditions for impurities and analyzing different spectral regimes ofλ.more » « less
-
From the general inverse theory of periodic Jacobi matrices, it is known that a periodic Jacobi matrix of minimal period p≥2 may have at most p−2 closed spectral gaps. We discuss the maximal number of closed gaps for one-dimensional periodic discrete Schrödinger operators of period p. We prove nontrivial upper and lower bounds on this quantity for large p and compute it exactly for p≤6. Among our results, we show that a discrete Schrödinger operator of period four or five may have at most a single closed gap, and we characterize exactly which potentials may exhibit a closed gap. For period six, we show that at most two gaps may close. In all cases in which the maximal number of closed gaps is computed, it is seen to be strictly smaller than p−2, the bound guaranteed by the inverse theory. We also discuss similar results for purely off-diagonal Jacobi matrices.more » « less
-
In this paper, we prove pure point spectrum for a large class of Schrödinger operators over circle maps with conditions on the rotation number going beyond the Diophantine. More specifically, we develop the scheme to obtain pure point spectrum for Schrödinger operators with monotone bi-Lipschitz potentials over orientation-preserving circle homeomorphisms with Diophantine or weakly Liouville rotation number. The localization is uniform when the coupling constant is large enough.more » « less
An official website of the United States government

