skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2213951

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Graph Neural Networks (GNNs) have excelled in diverse applications due to their outstanding predictive performance, yet they often overlook fairness considerations, prompting numerous recent efforts to address this societal concern. However, most fair GNNs assume complete demographics by design, which is impractical in most real-world socially sensitive applications due to privacy, legal, or regulatory restrictions. For example, the Consumer Financial Protection Bureau (CFPB) mandates that creditors ensure fairness without requesting or collecting information about an applicant’s race, religion, nationality, sex, or other demographics. To this end, this paper proposes fairGNN-WOD, a first-of-its-kind framework that considers mitigating unfairness in graph learning without using demographic information. In addition, this paper provides a theoretical perspective on analyzing bias in node representations and establishes the relationship between utility and fairness objectives. Experiments on three real-world graph datasets illustrate that fairGNN-WOD outperforms state-of-the-art baselines in achieving fairness but also maintains comparable prediction performance. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. Free, publicly-accessible full text available February 16, 2026