skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2215789

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Direct electron detectors in scanning transmission electron microscopy give unprecedented possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions that underpin functional properties. Quantifying nanoscale structural features with statistical significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast mechanisms, which often results in a low signal-to-noise ratio and the superposition of multiple signals that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering signatures of ferroelectric domains, domain walls, and vortex textures can readily be disentangled with statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-breaking distortions across large areas, mapping structural changes at interfaces and topological structures with nanoscale spatial resolution. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract High-throughput materials research is strongly required to accelerate the development of safe and high energy-density lithium-ion battery (LIB) applicable to electric vehicle and energy storage system. The artificial intelligence, including machine learning with neural networks such as Boltzmann neural networks and convolutional neural networks (CNN), is a powerful tool to explore next-generation electrode materials and functional additives. In this paper, we develop a prediction model that classifies the major composition (e.g., 333, 523, 622, and 811) and different states (e.g., pristine, pre-cycled, and 100 times cycled) of various Li(Ni, Co, Mn)O2(NCM) cathodes via CNN trained on scanning electron microscopy (SEM) images. Based on those results, our trained CNN model shows a high accuracy of 99.6% where the number of test set is 3840. In addition, the model can be applied to the case of untrained SEM data of NCM cathodes with functional electrolyte additives. 
    more » « less
  3. Abstract Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis and closed-loop microscope operation. The effective use of ML in electron microscopy now requires the development of strategies for microscopy-centric experiment workflow design and optimization. Here, we discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects, the requirements for edge operation, local and cloud data storage, and theory in the loop operations. Specifically, we discuss the relative contributions of human scientists and ML agents in the ideation, orchestration, and execution of experimental workflows, as well as the need to develop universal hyper languages that can apply across multiple platforms. These considerations will collectively inform the operationalization of ML in next-generation experimentation. 
    more » « less
  4. Abstract Ferroelectrics, due to their polar nature and reversible switching, can be used to dynamically control surface chemistry for catalysis, chemical switching, and other applications such as water splitting. However, this is a complex phenomenon where ferroelectric domain orientation and switching are intimately linked to surface charges. In this work, the temperature‐induced domain behavior of ferroelectric‐ferroelastic domains in free‐standing BaTiO3films under different gas environments, including vacuum and oxygen‐rich, is studied by in situ scanning transmission electron microscopy (STEM). An automated pathway to statistically disentangle and detect domain structure transformations using deep autoencoders, providing a pathway towards real‐time analysis is also established. These results show a clear difference in the temperature at which phase transition occurs and the domain behavior between various environments, with a peculiar domain reconfiguration at low temperatures, from a‐c to a‐a at ≈60 °C. The vacuum environment exhibits a rich domain structure, while under the oxidizing environment, the domain structure is largely suppressed. The direct visualization provided by in situ gas and heating STEM allows to investigate the influence of external variables such as gas, pressure, and temperature, on oxide surfaces in a dynamic manner, providing invaluable insights into the intricate surface‐screening mechanisms in ferroelectrics. 
    more » « less
  5. Abstract Microfluidic devices have found extensive applications in mechanical, biomedical, chemical, and materials research. However, the high initial cost, low resolution, inferior feature fidelity, poor repeatability, rough surface finish, and long turn-around time of traditional prototyping methods limit their wider adoption. In this study, a strategic approach to a deterministic fabrication process based on in-situ image analysis and intermittent flow control called image-guided in-situ maskless lithography (IGIs-ML), has been proposed to overcome these challenges. By using dynamic image analysis and integrated flow control, IGIs-ML provides superior repeatability and fidelity of densely packed features across a large area and multiple devices. This general and robust approach enables the fabrication of a wide variety of microfluidic devices and resolves critical proximity effect and size limitations in rapid prototyping. The affordability and reliability of IGIs-ML make it a powerful tool for exploring the design space beyond the capabilities of traditional rapid prototyping. 
    more » « less
  6. Free, publicly-accessible full text available October 27, 2025
  7. Free, publicly-accessible full text available August 7, 2025
  8. Free, publicly-accessible full text available August 3, 2025
  9. Free, publicly-accessible full text available August 3, 2025
  10. Free, publicly-accessible full text available August 3, 2025