Abstract Noncollinear ferroic materials are sought after as testbeds to explore the intimate connections between topology and symmetry, which result in electronic, optical, and magnetic functionalities not observed in collinear ferroic materials. For example, ferroaxial materials have rotational structural distortions that break mirror symmetry and induce chirality. When ferroaxial order is coupled with ferroelectricity arising from a broken inversion symmetry, it offers the prospect of electric‐field‐control of the ferroaxial distortions and opens up new tunable functionalities. However, chiral multiferroics, especially ones stable at room temperature, are rare. A strain‐stabilized, room‐temperature chiral multiferroic phase in single crystals of BaTiS3is reported here. Using first‐principles calculations, the stabilization of this multiferroic phase havingP63space group for biaxial tensile strains exceeding 1.5% applied on the basalab‐plane of the room temperatureP63cmphase of BaTiS3is predicted. The chiral multiferroic phase is characterized by rotational distortions of TiS6octahedra around the longc‐axis and polar displacement of Ti atoms along thec‐axis. The ferroaxial and ferroelectric distortions and their domains inP63‐BaTiS3are directly resolved using atomic resolution scanning transmission electron microscopy. Landau‐based phenomenological modeling predicts a strong coupling between the ferroelectric and the ferroaxial order makingP63‐BaTiS3an attractive test bed for achieving electric‐field‐control of chirality.
more »
« less
This content will become publicly available on December 1, 2025
Imaging and structure analysis of ferroelectric domains, domain walls, and vortices by scanning electron diffraction
Abstract Direct electron detectors in scanning transmission electron microscopy give unprecedented possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions that underpin functional properties. Quantifying nanoscale structural features with statistical significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast mechanisms, which often results in a low signal-to-noise ratio and the superposition of multiple signals that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering signatures of ferroelectric domains, domain walls, and vortex textures can readily be disentangled with statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-breaking distortions across large areas, mapping structural changes at interfaces and topological structures with nanoscale spatial resolution.
more »
« less
- PAR ID:
- 10532705
- Publisher / Repository:
- NPJ Computational Materials
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A BiFeO3film is grown epitaxially on a PrScO3single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3is the same as that of PrScO3with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3and PrScO3are stored as elastic energy within BiFeO3film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3maintains rhombohedral symmetry, i.e., space group ofR3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.more » « less
-
Abstract Spontaneous polarization and crystallographic orientations within ferroelectric domains are investigated using an epitaxially grown BiFeO3thin film under bi-axial tensile strain. Four dimensional-scanning transmission electron microscopy (4D-STEM) and atomic resolution STEM techniques revealed that the tensile strain applied is not enough to cause breakdown of equilibrium BiFeO3symmetry (rhombohedral with space group:R3c). 4D-STEM data exhibit two types of BiFeO3ferroelectric domains: one with projected polarization vector possessing out-of-plane component only, and the other with that consisting of both in-plane and out-of-plane components. For domains with only out-of-plane polarization, convergent beam electron diffraction (CBED) patterns exhibit “extra” Bragg’s reflections (compared to CBED of cubic-perovskite) that indicate rhombohedral symmetry. In addition, beam damage effects on ferroelectric property measurements were investigated by systematically changing electron energy from 60 to 300 keV.more » « less
-
null (Ed.)Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k -means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr 0.2 Ti 0.8 O 3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample.more » « less
-
Abstract Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS2films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements.more » « less