skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2215931

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spearing, M; Tsai, SW; Karbhari, VM (Ed.)
    Triboluminescence (TL) is a phenomenon of light emission induced by impact, stress, fracture, or an applied mechanical force. This phenomenon can be used to detect, evaluate, and predict mechanical failures in composites. In this report, we utilized manganese-doped zinc-sulphide (ZnS: Mn) and Polystyrene (PS) composite to fabricate a TL functional part via additive manufacturing. The morphology of the particles inside the polymer matrix were studied using scanning electron microscopy and micro CT scan. Thermoanalytical techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out to evaluate the thermal transitions and degradation of the composites. The mechanoluminescence performance of the printed samples is evaluated by three-point flexural test and observed to depend on processing conditions that can be utilized to achieve a strong light signal at different mechanical loads. The polymer composite fabrication and processing reduced particle size, enhanced particle dispersion, and altered the mechanical properties of the polymer to help increase the mechanoluminescence response up to 10 times in the 3D printed parts. The unique mechanoluminescence properties of 3D printed luminescent composite have great potential for structural monitoring applications. 
    more » « less