skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2216773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Recently, Intelligent IoT (IIoT), including various sensors, has gained significant attention due to its capability of sensing, deciding, and acting by leveraging artificial neural networks (ANN). Nevertheless, to achieve acceptable accuracy and high performance in visual systems, a power-delay-efficient architecture is required. In this paper, we propose an ultra-low-power processing in-sensor architecture, namely SenTer, realizing low-precision ternary multi-layer perceptron networks, which can operate in detection and classification modes. Moreover, SenTer supports two activation functions based on user needs and the desired accuracy-energy trade-off. SenTer is capable of performing all the required computations for the MLP's first layer in the analog domain and then submitting its results to a co-processor. Therefore, SenTer significantly reduces the overhead of analog buffers, data conversion, and transmission power consumption by using only one ADC. Additionally, our simulation results demonstrate acceptable accuracy on various datasets compared to the full precision models. 
    more » « less