skip to main content


Search for: All records

Award ID contains: 2216857

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In2O3, an n‐type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2O3in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2) and acceptors (here 2,2′‐(1,3,4,5,7,8‐hexafluoro‐2,6‐naphthalene‐diylidene)bis‐propanedinitrile, F6TCNNQ) is demonstrated. Starting from an electron‐depleted In2O3surface after annealing in oxygen, the deposition of [RuCp*mes]2restores the accumulation layer as a result of electron transfer from the donor molecules to In2O3, as evidenced by the observation of (partially) filled conduction sub‐bands near the Fermi level via angle‐resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2O3surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2O3in electronic devices are revealed.

     
    more » « less
  2. Abstract

    While metal‐halide perovskite light‐emitting diodes (PeLEDs) hold the potential for a new generation of display and lighting technology, their slow operation speed and response time limit their application scope. Here, high‐speed PeLEDs driven by nanosecond electrical pulses with a rise time of 1.2 ns are reported with a maximum radiance of approximately 480 kW sr−1 m−2at 8.3 kA cm−2, and an external quantum efficiency (EQE) of 1% at approximately 10 kA cm−2, through improved device configuration designs and material considerations. Enabled by the fast operation of PeLEDs, the temporal response provides access to transient charge carrier dynamics under electrical excitation, revealing several new electroluminescence quenching pathways. Finally, integrated distributed feedback (DFB) gratings are explored, which facilitate more directional light emission with a maximum radiance of approximately 1200 kW sr−1 m−2at 8.5 kA cm−2, a more than two‐fold enhancement to forward radiation output.

     
    more » « less
  3. Abstract

    2D polymers (2DPs) are promising as structurally well‐defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)‐containing 2DP semiconductors is enhanced by controllably n‐doping the NDI units using cobaltocene (CoCp2). Optical and transient microwave spectroscopy reveal that both as‐prepared NDI‐containing 2DPs are semiconducting with sub‐2 eV optical bandgaps and photoexcited charge‐carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2, both 2DPs largely retain their periodic structures and exhibit optical and electron‐spin resonance spectroscopic features consistent with the presence of NDI‐radical anions. While the native NDI‐based 2DPs are electronically insulating, maximum bulk conductivities of >10−4 S cm−1are achieved by substoichiometric levels of n‐doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out‐of‐plane (π‐stacking) crystallographic directions, which indicates that cross‐plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well‐defined, paramagnetic, 2DP n‐type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

     
    more » « less
  4. Molecular doping can increase the conductivity of organic semiconductors and plays an increasingly important role in emerging and established plastic electronics applications. 4-(1,3-Dimethyl-2,3-dihydro-1 H -benzimidazol-2-yl)- N , N -dimethylaniline (N-DMBI-H) and tris(pentafluorophenyl)borane (BCF) are established n- and p-dopants, respectively, but neither functions as a simple one-electron redox agent. Molecular hydrogen has been suggested to be a byproduct in several proposed mechanisms for doping using both N-DMBI-H and BCF. In this paper we show for the first time the direct detection of molecular hydrogen in the uncatalysed doping of a variety of polymeric and molecular semiconductors using these dopants. Our results provide insight into the doping mechanism, providing information complementary to that obtained from more commonly applied methods such as optical, electron spin resonance, and electrical measurements. 
    more » « less