skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217020

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum computing has become widely available to researchers via cloud-hosted devices with different technologies using a multitude of software development frameworks. The vertical stack behind such solutions typically features quantum language abstraction and high-level translation frameworks that tend to be open source, down to pulse-level programming. However, the lower-level mapping to the control electronics, such as controls for laser and microwave pulse generators, remains closed source for contemporary commercial cloud-hosted quantum devices. One exception is the ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) open-source library for trapped-ion control electronics. This stack has been complemented by the Duke ARTIQ Extensions (DAX) to provide modularity and better abstraction. It, however, remains disconnected from the wealth of features provided by popular quantum computing languages. This paper contributes QisDAX, a bridge between Qiskit and DAX that fills this gap. QisDAX provides interfaces for Python programs written using IBM's Qiskit and transpiles them to the DAX abstraction. This allows users to generically interface to the ARTIQ control systems accessing trapped-ion quantum devices. Consequently, the algorithms expressed in Qiskit become available to an open-source quantum software stack. This provides the first open-source, end-to-end, full-stack pipeline for remote submission of quantum programs for trapped-ion quantum systems in a non-commercial setting. 
    more » « less