skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217371

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Volcanic evolution in ocean island settings is often controlled by variations in the chemistry and volumetric flux of magma from an underlying mantle plume. In locations such as Hawaiʻi or Réunion, this results in predictable variations in magma chemistry, the rate of volcanic activity, and the depth of magma storage with volcanic age and/or distance from the centre of plume upwelling. These systems, however, represent outliers in global plume volcanism due to their high buoyancy flux, frequent eruptions, and large distance from any plate boundary. Most mantle plumes display clear interaction with nearby plate boundaries, influencing the dynamics of solid plume material in the upper mantle and the distribution of melt across regions of active volcanism. Yet, the influence of plume–ridge interaction and plume–ridge distance on the structure, characteristics, and evolution of magma storage beneath ocean island volcanoes remains under constrained. In this study, we consider the evolution of magmatic systems in the Galápagos Archipelago, a region of mantle plume volcanism located 150–250 km south of the Galápagos Spreading Centre (GSC), focusing on the depth of magma storage during the eastward transport of volcanic systems away from the centre of plume upwelling. Geochemical analysis of gabbro xenoliths from Isla Floreana in the southeastern Galápagos suggest that they formed at ~2–2.5 Ma, when the island was located close to the centre of plume upwelling. These nodules, therefore, provide rare insights into the evolution of volcanic systems in the Galápagos Archipelago, tracking variations in the magma system architecture as the Nazca plate carried Isla Floreana eastwards, away from the plume centre. Mineral thermobarometry, thermodynamic modelling, and CO2 fluid inclusion barometry reveal that Isla Floreana’s plume-proximal stage of volcanic activity—recorded in the gabbro xenoliths—was characterized by the presence of high-pressure magma storage (>25 km), below the base of the crust. In fact, we find no petrological evidence that sustained, crustal-level magma storage ever occurred beneath Isla Floreana. Our results contrast with the characteristics of volcanic systems in the western Galápagos above the current centre of plume upwelling, where mid-crust magma storage has been identified. We propose that this change in magmatic architecture of plume-proximal volcanic centres in the Galápagos—from high-pressure mantle storage at 2.5 Ma to mid-crustal storage at the present day—is controlled by the variations in plume–ridge distance. Owing to the northward migration of the GSC, the distance separating the plume stem and GSC is not constant, and was likely <100 km at 2.5 Ma, significantly less than the current plume–ridge distance of 150–250 km. We propose that smaller plume–ridge distances result in greater diversion of plume-material to the GSC, ‘starving’ the eastern Galápagos islands of magma during their initial formation and restricting the ability for these systems to develop long-lived crustal magma reservoirs. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Rapid-response petrological monitoring is a major advance for volcano observatories, allowing them to build and validate models of plumbing systems that supply eruptions in near-real time. The depth of magma storage has recently been identified as high-priority information for volcanic observatories, yet this information is not currently obtainable via petrological monitoring methods on timescales relevant to eruption response. Fluid inclusion barometry (using micro-thermometry or Raman spectroscopy) is a well-established petrological method to estimate magma storage depths and has been proposed to have potential as a rapid-response monitoring tool, although this has not been formally demonstrated. To address this deficiency, we performed a near-real-time rapid-response simulation for the September 2023 eruption of Kīlauea, Hawaiʻi. We show that Raman-based fluid inclusion barometry can robustly determine reservoir depths within a day of receiving samples—a transformative timescale that has not previously been achieved by petrological methods. Fluid inclusion barometry using micro-thermometric techniques has typically been limited to systems with relatively deep magma storage (>0.4 g/cm3 i.e.  > 7 km) where measurements of CO2 density are easy and accurate because the CO2 fluid homogenizes into the liquid phase. Improvements of the accuracy of Raman spectroscopy measurements of fluids with low CO2 density over the past couple of decades has enabled measurements of fluid inclusions from shallower magmatic systems. However, one caveat of examining shallower systems is that the fraction of H2O in the fluid may be too high to reliably convert CO2 density to pressure. To test the global applicability of rapid response fluid inclusion barometry, we compiled a global melt inclusion dataset (>4000 samples) and calculate the fluid composition at the point of vapor saturation ($${\mathrm{X}}_{{\mathrm{H}}_2\mathrm{O}}$$). We show that fluid inclusions in crystal hosts from mafic compositions (<57 wt. % SiO2)—likely representative of magmas recharging many volcanic systems worldwide—trap fluids with $${\mathrm{X}}_{{\mathrm{H}}_2\mathrm{O}}$$ low enough to make fluid inclusion barometry useful at many of the world’s most active and hazardous mafic volcanic systems (e.g. Iceland, Hawaiʻi, Galápagos Islands, East African Rift, Réunion, Canary Islands, Azores, Cabo Verde). 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available January 1, 2026
  4. We present DiadFit—an open-source Python3 tool for efficient processing of Raman spectroscopy data collected from fluid inclusions, melt inclusions and silicate melts. DiadFit is optimized to fit the characteristic peaks from CO2 fluids (Fermi diads, hot bands, 13C), gas species such as SO2, N2, solid precipitates (e.g. carbonates), and Ne emission lines with easily tweakable background positions and peak shapes. DiadFit's peak fitting functions are used as part of a number of workflows optimized for quantification of CO2 in melt inclusion vapour bubbles and fluid inclusions. DiadFit can also convert between temperature, pressure and density using various CO2 and CO2-H2O equations of state (EOS), allowing calculation of fluid inclusion pressures (and depths in the crust), conversion of homogenization temperatures from microthermometry to CO2 density, and propagation of uncertainties associated with EOS calculations using Monte Carlo methods. There are also functions to quantify the area ratio of the silicate vs. H2O region of spectra collected on silicate glasses to determine H2O contents in glasses and melt inclusions. Documentation and worked examples are available (https://bit.ly/DiadFitRTD, https://bit.ly/DiadFitYouTube). 
    more » « less
  5. The main magma reservoir beneath the 2021 La Palma eruption is located using CO2 fluid inclusions with Raman spectroscopy. 
    more » « less