Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract BackgroundEffective diabetes management requires precise glycemic control to prevent both hypoglycemia and hyperglycemia, yet existing machine learning (ML) and reinforcement learning (RL) approaches often fail to balance competing objectives. Traditional RL-based glucose regulation systems primarily focus on single-objective optimization, overlooking factors such as minimizing insulin overuse, reducing glycemic variability, and ensuring patient safety. Furthermore, these approaches typically rely on centralized data processing, which raises privacy concerns due to the sensitive nature of health care data. There is a critical need for a decentralized, privacy-preserving framework that can personalize blood glucose regulation while addressing the multiobjective nature of diabetes management. ObjectiveThis study aimed to develop and validate PRIMO-FRL (Privacy-Preserving Reinforcement Learning for Individualized Multi-Objective Glycemic Management Using Federated Reinforcement Learning), a novel framework that optimizes clinical objectives—maximizing time in range (TIR), reducing hypoglycemia and hyperglycemia, and minimizing glycemic risk—while preserving patient privacy. MethodsWe developed PRIMO-FRL, integrating multiobjective reward shaping to dynamically balance glucose stability, insulin efficiency, and risk reduction. The model was trained and tested using simulated data from 30 simulated patients (10 children, 10 adolescents, and 10 adults) generated with the Food and Drug Administration (FDA)–approved UVA/Padova simulator. A comparative analysis was conducted against state-of-the-art RL and ML models, evaluating performance using metrics such as TIR, hypoglycemia (<70 mg/dL), hyperglycemia (>180 mg/dL), and glycemic risk scores. ResultsThe PRIMO-FRL model achieved a robust overall TIR of 76.54%, with adults demonstrating the highest TIR at 81.48%, followed by children at 77.78% and adolescents at 70.37%. Importantly, the approach eliminated hypoglycemia, with 0.0% spent below 70 mg/dL across all cohorts, significantly outperforming existing methods. Mild hyperglycemia (180-250 mg/dL) was observed in adolescents (29.63%), children (22.22%), and adults (18.52%), with adults exhibiting the best control. Furthermore, the PRIMO-FRL approach consistently reduced glycemic risk scores, demonstrating improved safety and long-term stability in glucose regulation.. ConclusionsOur findings highlight the potential of PRIMO-FRL as a transformative, privacy-preserving approach to personalized glycemic management. By integrating federated RL, this framework eliminates hypoglycemia, improves TIR, and preserves data privacy by decentralizing model training. Unlike traditional centralized approaches that require sharing sensitive health data, PRIMO-FRL leverages federated learning to keep patient data local, significantly reducing privacy risks while enabling adaptive and personalized glucose control. This multiobjective optimization strategy offers a scalable, secure, and clinically viable solution for real-world diabetes care. The ability to train personalized models across diverse populations without exposing raw data makes PRIMO-FRL well-suited for deployment in privacy-sensitive health care environments. These results pave the way for future clinical adoption, demonstrating the potential of privacy-preserving artificial intelligence in optimizing glycemic regulation while maintaining security, adaptability, and personalization.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            BackgroundReminiscence, a therapy that uses stimulating materials such as old photos and videos to stimulate long-term memory, can improve the emotional well-being and life satisfaction of older adults, including those who are cognitively intact. However, providing personalized reminiscence therapy can be challenging for caregivers and family members. ObjectiveThis study aimed to achieve three objectives: (1) design and develop the GoodTimes app, an interactive multimodal photo album that uses artificial intelligence (AI) to engage users in personalized conversations and storytelling about their pictures, encompassing family, friends, and special moments; (2) examine the app’s functionalities in various scenarios using use-case studies and assess the app’s usability and user experience through the user study; and (3) investigate the app’s potential as a supplementary tool for reminiscence therapy among cognitively intact older adults, aiming to enhance their psychological well-being by facilitating the recollection of past experiences. MethodsWe used state-of-the-art AI technologies, including image recognition, natural language processing, knowledge graph, logic, and machine learning, to develop GoodTimes. First, we constructed a comprehensive knowledge graph that models the information required for effective communication, including photos, people, locations, time, and stories related to the photos. Next, we developed a voice assistant that interacts with users by leveraging the knowledge graph and machine learning techniques. Then, we created various use cases to examine the functions of the system in different scenarios. Finally, to evaluate GoodTimes’ usability, we conducted a study with older adults (N=13; age range 58-84, mean 65.8 years). The study period started from January to March 2023. ResultsThe use-case tests demonstrated the performance of GoodTimes in handling a variety of scenarios, highlighting its versatility and adaptability. For the user study, the feedback from our participants was highly positive, with 92% (12/13) reporting a positive experience conversing with GoodTimes. All participants mentioned that the app invoked pleasant memories and aided in recollecting loved ones, resulting in a sense of happiness for the majority (11/13, 85%). Additionally, a significant majority found GoodTimes to be helpful (11/13, 85%) and user-friendly (12/13, 92%). Most participants (9/13, 69%) expressed a desire to use the app frequently, although some (4/13, 31%) indicated a need for technical support to navigate the system effectively. ConclusionsOur AI-based interactive photo album, GoodTimes, was able to engage users in browsing their photos and conversing about them. Preliminary evidence supports GoodTimes’ usability and benefits cognitively intact older adults. Future work is needed to explore its potential positive effects among older adults with cognitive impairment.more » « less
- 
            BackgroundMachine learning approaches, including deep learning, have demonstrated remarkable effectiveness in the diagnosis and prediction of diabetes. However, these approaches often operate as opaque black boxes, leaving health care providers in the dark about the reasoning behind predictions. This opacity poses a barrier to the widespread adoption of machine learning in diabetes and health care, leading to confusion and eroding trust. ObjectiveThis study aimed to address this critical issue by developing and evaluating an explainable artificial intelligence (AI) platform, XAI4Diabetes, designed to empower health care professionals with a clear understanding of AI-generated predictions and recommendations for diabetes care. XAI4Diabetes not only delivers diabetes risk predictions but also furnishes easily interpretable explanations for complex machine learning models and their outcomes. MethodsXAI4Diabetes features a versatile multimodule explanation framework that leverages machine learning, knowledge graphs, and ontologies. The platform comprises the following four essential modules: (1) knowledge base, (2) knowledge matching, (3) prediction, and (4) interpretation. By harnessing AI techniques, XAI4Diabetes forecasts diabetes risk and provides valuable insights into the prediction process and outcomes. A structured, survey-based user study assessed the app’s usability and influence on participants’ comprehension of machine learning predictions in real-world patient scenarios. ResultsA prototype mobile app was meticulously developed and subjected to thorough usability studies and satisfaction surveys. The evaluation study findings underscore the substantial improvement in medical professionals’ comprehension of key aspects, including the (1) diabetes prediction process, (2) data sets used for model training, (3) data features used, and (4) relative significance of different features in prediction outcomes. Most participants reported heightened understanding of and trust in AI predictions following their use of XAI4Diabetes. The satisfaction survey results further revealed a high level of overall user satisfaction with the tool. ConclusionsThis study introduces XAI4Diabetes, a versatile multi-model explainable prediction platform tailored to diabetes care. By enabling transparent diabetes risk predictions and delivering interpretable insights, XAI4Diabetes empowers health care professionals to comprehend the AI-driven decision-making process, thereby fostering transparency and trust. These advancements hold the potential to mitigate biases and facilitate the broader integration of AI in diabetes care.more » « less
- 
            BackgroundChronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences. ObjectiveThis study aimed to design an artificial intelligence (AI)–powered meal planner that can generate personalized healthy meal plans based on the user’s specific health conditions, personal preferences, and status. MethodsWe proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user’s health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user’s other preferences, we proposed a multicriteria decision-making approach. ResultsWe implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user’s health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user’s preferences. The users were generally satisfied with the system and its features. ConclusionsWe designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people’s health and nutrition goals.more » « less
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Background/Objective: Nutritionists play a crucial role in guiding individuals toward healthier lifestyles through personalized meal planning; however, this task involves navigating a complex web of factors, including health conditions, dietary restrictions, cultural preferences, and socioeconomic constraints. The Analytic Hierarchy Process (AHP) offers a valuable framework for structuring these multi-faceted decisions but inconsistencies can hinder its effectiveness in pairwise comparisons. Methods: This paper proposes a novel hybrid Particle Swarm Optimization–Simulated Annealing (PSO-SA) algorithm to refine inconsistent AHP weight matrices, ensuring a consistent and accurate representation of the nutritionist’s expertise and client preferences. Our approach merges PSO’s global search capabilities with SA’s local search precision, striking an optimal balance between exploration and exploitation. Results: We demonstrate the practical utility of our algorithm through real-world use cases involving personalized meal planning for individuals with specific dietary needs and preferences. Results showcase the algorithm’s efficiency in achieving consistency and surpassing standard PSO accuracy. Conclusion: By integrating the PSO-SA algorithm into a mobile app, we empower nutritionists with an advanced decision-making tool for creating tailored meal plans that promote healthier dietary choices and improved client outcomes. This research represents a significant advancement in multi-criteria decision-making for nutrition, offering a robust solution to the inconsistency challenge in AHP and paving the way for more effective and personalized dietary interventions.more » « less
- 
            Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
