Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 10, 2025
-
Not_applicable (Ed.)Like the black knight in the classic Monty Python movie, grand scientific challenges such as protein folding are hard to finish off. Notably, AlphaFold is revolutionizing structural biology by bringing highly accurate structure prediction to the masses and opening up innumerable new avenues of research. Despite this enormous success, calling structure prediction, much less protein folding and related problems, “solved” is dangerous, as doing so could stymie further progress. Imagine what the world would be like if we had declared flight solved after the first commercial airlines opened and stopped investing in further research and development. Likewise, there are still important limitations to structure prediction that we would benefit from addressing. Moreover, we are limited in our understanding of the enormous diversity of different structures a single protein can adopt (called a conformational ensemble) and the dynamics by which a protein explores this space. What is clear is that conformational ensembles are critical to protein function, and understanding this aspect of protein dynamics will advance our ability to design new proteins and drugs.more » « less
-
Cryptic pockets are of growing interest as potential drug targets, particularly to control protein-nucleic acid interactions that often occur via flat surfaces. However, it remains unclear whether cryptic pockets contribute to protein function or if they are merely happenstantial features that can easily be evolved away to achieve drug resistance. Here, we explore whether a cryptic pocket in the Interferon Inhibitory Domain (IID) of viral protein 35 (VP35) of Zaire ebolavirus aids its ability to bind double-stranded RNA (dsRNA). We use simulations and experiments to study the relationship between cryptic pocket opening and dsRNA binding of the IIDs of two other filoviruses, Reston and Marburg. These homologs have nearly identical structures but block different interferon pathways due to different affinities for blunt ends and backbone of the dsRNA. Simulations and thiol-labeling experiments demonstrate that the homologs have varying probabilities of pocket opening. Subsequent dsRNA-binding assays suggest that closed conformations preferentially bind dsRNA blunt ends while open conformations prefer binding the backbone. Point mutations that modulate pocket opening proteins further confirm this preference. These results demonstrate the open cryptic pocket has a function, suggesting cryptic pockets are under selective pressure and may be difficult to evolve away to achieve drug resistance.more » « less
-
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)‐approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics‐based precision medicine, a scalable framework that promises to improve our understanding of sequence–function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.more » « less
-
Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman–Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin’s highly allosteric nature.more » « less
-
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property–free knowledge base for future anticoronavirus drug discovery.more » « less
An official website of the United States government
