skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward physics‐based precision medicine: Exploiting protein dynamics to design new therapeutics and interpret variants
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)‐approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics‐based precision medicine, a scalable framework that promises to improve our understanding of sequence–function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.  more » « less
Award ID(s):
2218156
PAR ID:
10589932
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Protein Science
Date Published:
Journal Name:
Protein Science
Volume:
33
Issue:
3
ISSN:
0961-8368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the structural determinants of a protein’s biochemical properties, such as activity and stability, is a major challenge in biology and medicine. Comparing computer simulations of protein variants with different biochemical properties is an increasingly powerful means to drive progress. However, success often hinges on dimensionality reduction algorithms for simplifying the complex ensemble of structures each variant adopts. Unfortunately, common algorithms rely on potentially misleading assumptions about what structural features are important, such as emphasizing larger geometric changes over smaller ones. Here we present DiffNets, self-supervised autoencoders that avoid such assumptions, and automatically identify the relevant features, by requiring that the low-dimensional representations they learn are sufficient to predict the biochemical differences between protein variants. For example, DiffNets automatically identify subtle structural signatures that predict the relative stabilities of β-lactamase variants and duty ratios of myosin isoforms. DiffNets should also be applicable to understanding other perturbations, such as ligand binding. 
    more » « less
  2. Abstract Deep learning approaches like AlphaFold 2 (AF2) have revolutionized structural biology by accurately predicting the ground state structures of proteins. Recently, clustering and subsampling techniques that manipulate multiple sequence alignment (MSA) inputs into AlphaFold to generate conformational ensembles of proteins have also been proposed. Although many of these techniques have been made open source, they often require integrating multiple packages and can be challenging for researchers who have a limited programming background to employ. This is especially true when researchers are interested in subsampling to produce predictions of protein conformational ensembles, which require multiple computational steps. This manuscript introduces FastConformation, a Python-based application that integrates MSA generation, structure prediction via AF2, and interactive analysis of protein conformations and their distributions, all in one place. FastConformation is accessible through a user-friendly GUI suitable for non-programmers, allowing users to iteratively refine subsampling parameters based on their analyses to achieve diverse conformational ensembles. Starting from an amino acid sequence, users can make protein conformation predictions and analyze results in just a few hours on their local machines, which is significantly faster than traditional molecular dynamics (MD) simulations. Uniquely, by leveraging the subsampling of MSAs, our tool enables the generation of alternative protein conformations. We demonstrate the utility of FastConformation on proteins including the Abl1 kinase, LAT1 transporter, and CCR5 receptor, showcasing its ability to predict and analyze the protein conformational ensembles and effects of mutations on a variety of proteins. This tool enables a wide range of high-throughput applications in protein biochemistry, drug discovery, and protein engineering. 
    more » « less
  3. The novel coronavirus SARS-CoV-2 infects human cells using a mechanism that involves binding and structural rearrangement of its Spike protein. Understanding protein rearrangement and identifying specific amino acids where mutations affect protein rearrangement has attracted much attention for drug development. In this manuscript, we use a mathematical method to characterize the local topology/geometry of the SARS-CoV-2 Spike protein backbone. Our results show that local conformational changes in the FP, HR1, and CH domains are associated with global conformational changes in the RBD domain. The SARS-CoV-2 variants analyzed in this manuscript (alpha, beta, gamma, delta Mink, G614, N501) show differences in the local conformations of the FP, HR1, and CH domains as well. Finally, most mutations of concern are either in or in the vicinity of high local topological free energy conformations, suggesting that high local topological free energy conformations could be targets for mutations with significant impact of protein function. Namely, the residues 484, 570, 614, 796, and 969, which are present in variants of concern and are targeted as important in protein function, are predicted as such from our model. 
    more » « less
  4. Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations—whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico–chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties. 
    more » « less
  5. Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen–deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. 
    more » « less