skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2219542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents the implementation of a parameter-free third-order recon- struction method for cell-centered finite volume solvers on unstructured grids. The reconstruction is based on nodal gradients obtained using the least squares approach from solutions at adjacent cell centers. The cell and face gradients are computed by simple arithmetic averaging of vertex gradients, while the face values are obtained through quadratic interpolation. Importantly, the current reconstruction method does not require explicit second derivatives, and its stencil remains as compact as that used in traditional linear reconstruction methods. The third-order accuracy of the left and right states at the face values, along with the second-order accuracy of the face gradients, is numerically verified on various unstructured grids. This verified third-order accuracy is a crucial condition for ensuring the overall accuracy of the finite volume solver. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  2. Between May 25, 2023 and June 21, 2023, we hosted the inaugural four-week High-Performance Computing Summer Institute at Jackson State University. This endeavor was made possible through the support of a three-year NSF CISE-MSI grant. The primary objective of this Summer Institute revolved around the engagement, education, and empowerment of minority and underrepresented students in the realm of High-Performance Computing (HPC) within the field of engineering. Nine undergraduate students with diverse background were recruited to participate in this program.  Throughout the program, we immersed these students in a comprehensive curriculum that covered various critical facets of HPC. This curriculum encompassed hands-on instruction in Linux operating system command-line operations, C programming within the Linux environment, fundamental HPC concepts, parallel computing utilizing the Message Passing Interface (MPI) library, and GPU computing through OpenCL. Additionally, we delved into foundational aspects of fluid mechanics, geometric modeling, mesh generation, flow simulation via our in-house flow solvers, and the visualization of solutions. At the end of the program, every participant was tasked with delivering an oral presentation and submitting a written report encapsulating their acquired knowledge and experiences during the program. We are excited to share a detailed overview of our program's implementation with our audience. This includes insights into our utilization of ChatGPT to enhance C programming learning and our suggestion of the NSF ACCESS resources to gain access to HPC systems. We are proud to announce that the program has achieved remarkable success, as evidenced by the positive feedback we received from the participants. 
    more » « less
  3. This paper presents a robust mesh moving solver developed to address moving boundary problems. Crucially, the resulting deformed mesh retains the same topology as the original mesh without being overly distorted. The mesh is treated as an elastic material, and the deformation of the computational domain resulting from moving boundaries is determined by solving the equilibrium linear elasticity equations. The linear elasticity equations are discretized by the classic Galerkin finite element method and solved by the block conjugate gradient iterative method. To maintain the quality of the mesh after motion, the Young's modulus of each element is weighted by the reciprocal of the distance between the element center and the moving boundaries. The effectiveness of this approach is demonstrated through a set of 2D and 3D test cases featuring prescribed translational and/or rotational motion of the embedded object. The method is now ready for integration into our existing in-house CFD solvers. 
    more » « less
  4. Abstract This paper reports the development of a numerical solver aimed to simulate the interaction between the space charge (i.e. ions) distribution and the electric field in liquid argon time projection chamber (LArTPC) detectors. The ion transport equation is solved by a time-accurate, cell-centered finite volume method and the electric potential equation by a continuous finite element method. The electric potential equation updates the electric field which provides the drift velocity to the ion transport equation. The ion transport equation updates the space charge density distribution which appears as the source term in the electric potential equation. The interaction between the space charge distribution and the electric field is numerically simulated within each physical time step. The convective velocity in the ion transport equation can include the background flow velocity in addition to the electric drift velocity. The numerical solver has been parallelized using the Message Passing Interface (MPI) library. Numerical tests show and verify the capability and accuracy of the current numerical solver. It is planned that the developed numerical solver, together with a Computational Fluid Dynamics (CFD) package which provides the flow velocity field, can be used to investigate the space charge effect on the electric field in large-scale particle detectors. 
    more » « less