This paper develops a tree-topological local mesh refinement (TLMR) method on Cartesian grids for the simulation of bio-inspired flow with multiple moving objects. The TLMR nests refinement mesh blocks of structured grids to the target regions and arrange the blocks in a tree topology. The method solves the time-dependent incompressible flow using a fractional-step method and discretizes the Navier-Stokes equation using a finite-difference formulation with an immersed boundary method to resolve the complex boundaries. When iteratively solving the discretized equations across the coarse and fine TLMR blocks, for better accuracy and faster convergence, the momentum equation is solved on all blocks simultaneously, while the Poisson equation is solved recursively from the coarsest block to the finest ones. When the refined blocks of the same block are connected, the parallel Schwarz method is used to iteratively solve both the momentum and Poisson equations. Convergence studies show that the algorithm is second-order accurate in space for both velocity and pressure, and the developed mesh refinement technique is benchmarked and demonstrated by several canonical flow problems. The TLMR enables a fast solution to an incompressible flow problem with complex boundaries or multiple moving objects. Various bio-inspired flows of multiple moving objects show that the solver can save over 80% computational time, proportional to the grid reduction when refinement is applied. 
                        more » 
                        « less   
                    
                            
                            A Robust Mesh Moving Method for Moving-Boundary Problems
                        
                    
    
            This paper presents a robust mesh moving solver developed to address moving boundary problems. Crucially, the resulting deformed mesh retains the same topology as the original mesh without being overly distorted. The mesh is treated as an elastic material, and the deformation of the computational domain resulting from moving boundaries is determined by solving the equilibrium linear elasticity equations. The linear elasticity equations are discretized by the classic Galerkin finite element method and solved by the block conjugate gradient iterative method. To maintain the quality of the mesh after motion, the Young's modulus of each element is weighted by the reciprocal of the distance between the element center and the moving boundaries. The effectiveness of this approach is demonstrated through a set of 2D and 3D test cases featuring prescribed translational and/or rotational motion of the embedded object. The method is now ready for integration into our existing in-house CFD solvers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2219542
- PAR ID:
- 10534438
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics
- Date Published:
- ISBN:
- 978-1-62410-711-5
- Format(s):
- Medium: X
- Location:
- Orlando, FL
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. We consider a nonlinear, moving boundary, fluid-structure interaction problem between a time dependent incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh of elastic rods. The fluid flow is modeled by the time-dependent Navier- Stokes equations in a three-dimensional cylindrical domain, while the lateral wall of the cylinder is modeled by the two-dimensional linearly elastic Koiter shell equations coupled to a one-dimensional system of conservation laws defined on a graph domain, describing a mesh of curved rods. The mesh supported shell allows displacements in all three spatial directions. Two-way coupling based on kinematic and dynamic coupling conditions is assumed between the fluid and composite structure, and between the mesh of curved rods and Koiter shell. Problems of this type arise in many ap- plications, including blood flow through arteries treated with vascular prostheses called stents. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time discretization via Lie operator splitting method combined with an Arbitrary Lagrangian-Eulerian approach, and a non-trivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.more » « less
- 
            Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods.more » « less
- 
            Abstract We propose a uniform block-diagonal preconditioner for condensed $$H$$(div)-conforming hybridizable discontinuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215–235). A spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity. Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.more » « less
- 
            The phase field method is becoming the de facto choice for the numerical analysis of complex problems that involve multiple initiating, propagating, interacting, branching and merging fractures. However, within the context of finite element modelling, the method requires a fine mesh in regions where fractures will propagate, in order to capture sharp variations in the phase field representing the fractured/damaged regions. This means that the method can become computationally expensive when the fracture propagation paths are not known a priori. This paper presents a 2D hp-adaptive discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static and propagating fractures. This combination means that it is possible to be reliably and efficiently solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry or loading conditions. This ability is demonstrated on several example problems, which are solved using a light-BFGS (Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm. The examples highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors for physically meaningful, yet computationally tractable, results. They also reveal the importance of including p-refinement, which is typically not included in existing phase field literature. The above features provide a powerful and general tool for modelling fracture propagation with controlled errors and degree-of-freedom optimised meshes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    