Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Click beetles (Coleoptera: Elateridae) are known for their unique clicking mechanism that generates a powerful legless jump. From an inverted position, click beetles jump by rapidly accelerating their center of mass (COM) upwards. Prior studies on the click beetle jump have focused on relatively small species (body length ranging from 7 to 24 mm) and have assumed that the COM follows a ballistics trajectory during the airborne phase. In this study, we record the jump and the morphology of 38 specimens from diverse click beetle genera (body length varying from 7 to 37 mm) to investigate how body length and jumping performance scale across the mass range. The experimental results are used to test the ballistics motion assumption. We derive the first morphometric scaling laws for click beetles and provide evidence that the click beetle body scales isometrically with increasing body mass. Linear and nonlinear statistical models are developed to study the jumping kinematics. Modeling results show that mass is not a predictor of jump height, take-off angle, velocity at take-off, and maximum acceleration. The ballistics motion assumption is strongly supported. This work provides a modeling framework to reconstruct complete morphological data sets and predict the jumping performance of click beetles from various shapes and sizes.more » « less
-
Our ability to measure and image biology at small scales has been transformative for developing a new generation of insect-scale robots. Because of their presence in almost all environments known to humans, insects have inspired many small-scale flying, swimming, crawling, and jumping robots. This inspiration has affected all aspects of the robots’ design, ranging from gait specification, materials properties, and mechanism design to sensing, actuation, control, and collective behavior schemes. This article highlights how insects have inspired a new class of small and ultrafast robots and mechanisms. These new robots can circumvent motors’ force-velocity tradeoffs and achieve high-acceleration jumping, launching, and striking through latch-mediated spring-actuated (LaMSA) movement strategies. In the article, we apply a solution-driven bioinspired design framework to highlight the process for developing LaMSA-inspired robots and systems, starting with understanding the key biological themes, abstracting them to solution-neutral principles, and implementing such principles into engineered systems. Throughout the article, we emphasize the roles of modeling, fabrication, materials, and integration in developing bioinspired LaMSA systems and identify critical future enablers such as integrative design approaches.more » « less
-
In nature, click-beetles use a unique hinge structure between their prothorax and mesothorax that acts as a latch-mediated spring actuation system to produce a high acceleration that can result in a jump. This mechanism enables them to jump a height of several times their body length without using their legs when the beetle is unconstrained. To study the beetle jump trajectory, we designed simplified beetle-inspired prototypes and a launching platform. The simplified prototypes are fundamentally two masses connected by a spring. The masses simulate the portion of a click beetle’s body located anteriorly (M1) and posteriorly (M2) to the clicking mechanism, and the spring simulates the elastic energy storage element. The launcher uses a quick-reaction release mechanism and magnetic actuator to simulate the unlatching process. In trajectory analysis, the parameters that are most important are initial velocity at take-off and the take-off angle since both the click beetles and the prototypes are governed by ballistic motion. We determined that morphological features such as elytra (body) curvature and the ratio of the two body masses affect these two dynamic parameters. Our findings provide further insight into the design and fabrication of legless jumping robotic mechanisms and apply engineering models and experimental tools to answer key biological questions.more » « less
-
Millions of years of evolution have allowed animals to develop unusual locomotion capabilities. A striking example is the legless-jumping of click beetles and trap-jaw ants, which jump more than 10 times their body length. Their delicate musculoskeletal system amplifies their muscles’ power. It is challenging to engineer insect-scale jumpers that use onboard actuators for both elastic energy storage and power amplification. Typical jumpers require a combination of at least two actuator mechanisms for elastic energy storage and jump triggering, leading to complex designs having many parts. Here, we report the new concept of dynamic buckling cascading, in which a single unidirectional actuation stroke drives an elastic beam through a sequence of energy-storing buckling modes automatically followed by spontaneous impulsive snapping at a critical triggering threshold. Integrating this cascade in a robot enables jumping with unidirectional muscles and power amplification (JUMPA). These JUMPA systems use a single lightweight mechanism for energy storage and release with a mass of 1.6 g and 2 cm length and jump up to 0.9 m, 40 times their body length. They jump repeatedly by reengaging the latch and using coiled artificial muscles to restore elastic energy. The robots reach their performance limits guided by theoretical analysis of snap-through and momentum exchange during ground collision. These jumpers reach the energy densities typical of the best macroscale jumping robots, while also matching the rapid escape times of jumping insects, thus demonstrating the path toward future applications including proximity sensing, inspection, and search and rescue.more » « less
An official website of the United States government
