- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dagenais, Mario (2)
-
Veilleux, Sylvain (2)
-
Zhang, Yang (2)
-
Ai, Xiheng (1)
-
Chembo, Yanne K (1)
-
Heidari, Elham (1)
-
Hsu, Wei-Lun (1)
-
Menyuk, Curtis R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.more » « less
-
Chembo, Yanne K; Heidari, Elham; Menyuk, Curtis R (, Applied Physics Letters)Microresonator Kerr optical frequency combs currently constitute a well-established research area in integrated, nonlinear, and quantum photonics. These systems have found a plethora of technological applications, while serving as an excellent platform to investigate fundamental scientific topics such as light–matter interactions, pattern formation in driven-dissipative systems, or entangled twin-photon generation. We here provide a brief overview of the topic, highlight some of the most recent advances, and discuss a few of the main challenges ahead in this field.more » « less
-
Fabry-Perot Bragg grating nanoresonator with ultrahigh intrinsic Q based on low-loss silicon nitrideZhang, Yang; Veilleux, Sylvain; Dagenais, Mario (, Optics Express)Photonic integrated circuits based on ultralow loss silicon nitride waveguides have shown significant promise for realizing high-performance optical systems in a compact and scalable form factor. For the first time, we have developed a Fabry-Perot Bragg grating nanoresonator based on silicon nitride on silicon dioxide platform with an ultra-high intrinsic quality factor of 19.3 million. By combining the introduction of tapered grating between cavity and periodic Bragg grating, increasing the width of cavity to multi-mode region and optimized annealing strategy for Si3N4film, the propagation loss is reduced to around 0.014 dB/cm. Fabry-Perot Bragg grating nanoresonator can be easily implemented in a simple straight waveguide occupying a minimal amount of space. Therefore, it is a key component to build a high performance photonic integrated circuit for many applications.more » « less
An official website of the United States government
