skip to main content


Title: Broadband 2 × 2 multimode-interference coupler on the silicon-nitride platform

In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.

 
more » « less
NSF-PAR ID:
10493499
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
6
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 9405
Size(s):
["Article No. 9405"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

     
    more » « less
  2. The design, fabrication, and characterization of low-loss ultra-compact bends in high-index (n=3.1atλ<#comment/>=1550nm) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of65×<#comment/>65µ<#comment/>m2, having a total active waveguide length of 1.2 mm. The device featured a phase-shifting efficiency of8mW/π<#comment/>and a 3 dB switching bandwidth of 15 KHz. We propose SRN as a promising thermo-optic platform that combines the properties of silicon and stoichiometric silicon nitride.

     
    more » « less
  3. The lack of a bulk second-order nonlinearity (χ(2)) in silicon nitride (Si3N4) keeps this low-loss, CMOS-compatible platform from key active functions such as Pockels electro-optic (EO) modulation and efficient second harmonic generation (SHG). We demonstrate a successful induction ofχ(2)in Si3N4through electrical poling with an externally-applied field to align the Si-N bonds. This alignment breaks the centrosymmetry of Si3N4, and enables the bulkχ(2). The sample is heated to over 500°C to facilitate the poling. The comparison between the EO responses of poled and non-poled Si3N4, measured using a Si3N4micro-ring modulator, shows at least a 25X enhancement in ther33EO component. The maximumχ(2)we obtain through poling is 0.30pm/V. We observe a remarkable improvement in the speed of the measured EO responses from 3 GHz to 15 GHz (3 dB bandwidth) after the poling, which confirms theχ(2)nature of the EO response induced by poling. This work paves the way for high-speed active functions on the Si3N4platform.

     
    more » « less
  4. We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.65±0.08) ×10−4K-1. Furthermore, we realize an SRN multi-mode interferometer (MMI) based thermo-optic switch with over 20 dB extinction ratio and total power consumption for two-port switching of 50 mW.

     
    more » « less
  5. Abstract

    Silicon waveguides have enabled large‐scale manipulation and processing of near‐infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free‐space wavelength. This paper demonstrates that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can simultaneously enable dual‐band operation at both mid‐infrared (6.5–7.0 µm) and telecom (1.55 µm) frequencies, respectively. The device is realized via the lithography‐free transfer of hBN onto a silicon waveguide, maintaining near‐infrared operation. In addition, mid‐infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) supported in hBN is induced by the index contrast between the silicon waveguide and the surrounding air underneath the hBN, thereby eliminating the need for deleterious etching of the hyperbolic medium. The behavior of HPhP waveguiding in both straight and curved trajectories is validated within an analytical waveguide theoretical framework. This exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on‐chip photonic systems.

     
    more » « less