skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2220274

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2into solid biominerals. Six crystalline polymorphs of CaCO3are known—3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials. 
    more » « less
  2. Abstract Biominerals formed by animals are most frequently calcium carbonate or phosphate polycrystalline materials with complex hierarchical structures. This article will focus on the 10-nm–10-µm scale, termed “mesoscale,” at which the “mesostructure” differs greatly across biominerals, is relevant to their mechanical properties, and reveals formation mechanisms in sea urchin teeth, mollusk shell prisms and nacre, human enamel, and coral skeletons. This article will conclude by focusing on important unanswered questions to inspire future research. Graphical abstract 
    more » « less
  3. Abstract Mollusk shells protect the animals that form and inhabit them. They are composites of minerals and organics, with diverse mesostructures, including nacre, prismatic calcite, crossed‐lamellar aragonite, and foliated calcite. Twins, that is, crystals mirror symmetric with respect to their coherent interface, occurring as formation or deformation twins, are observed in all mollusk shell mesostructures but never within calcite prisms. Here, nanotwins and microwins within single calcite prisms are observed in different shells. Using Polarization‐dependent Imaging Contrast (PIC) mapping with 20–60 nm resolution, twins are observed to be 0.2–3 µm thick layers of differently oriented and colored crystals with respect to the main prism crystal. Multiple twins are interspersed with the prism crystal, parallel to one another, and similarly oriented. When comparing images of calcite prisms and twins obtained by PIC mapping and by Electron Back‐Scattered Diffraction (EBSD), the images correspond precisely. All twins are e‐twin types, with 127° angular distance betweenc‐axes. E‐twins are the most common deformation twins in geologic calcite, as also observed here in Carrara marble. Location of all twins near the outer surface of all shells and e‐twin type both suggest that twins within calcite prisms in mollusk shells result from deformation twinning. 
    more » « less
  4. Abstract Biominerals are organic–mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano‐ and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro‐ and nanoscales, using polarization‐dependent imaging contrast mapping (PIC mapping), and the slight misorientations are consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single‐crystalline geologic aragonite. Molecular dynamics (MD) simulations of bicrystals at the molecular scale reveal that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight‐misorientation‐toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top‐down architecture, and are easily achieved by self‐assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals. 
    more » « less
  5. Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibility and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their strong piezoelectric polar 〈001〉 direction aligned with the film thickness. Based on the recently-developed solidification approach of a polyvinyl alcohol (PVA) and glycine aqueous solution, in this work, we demonstrate that the crystal orientation of the as-synthesized film is determined by the orientation of glycine crystal nuclei. By controlling the local nucleation kinetics via surface curvature tuning, we shifted the nucleation site from the edge to the middle of the liquid film, and thereby aligned the 〈001〉 direction vertically. As a result, the PVA–glycine–PVA sandwich film exhibits the highest aver-age piezoelectric coefficient d 33 of 6.13 ± 1.13 pC N −1 . This work demonstrates a promising kinetic approach to achieve crystallization and property control in a scalable biocrystal manufacturing process. 
    more » « less
  6. An integrated model illuminates the fate of marine carbonate biomineralizers in past, present, and future mass extinctions. 
    more » « less