Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This manuscript presents the updated version of the Neural Network Verification (NNV) tool. NNV is a formal verification software tool for deep learning models and cyber-physical systems with neural network components. NNV was first introduced as a verification framework for feedforward and convolutional neural networks, as well as for neural network control systems. Since then, numerous works have made significant improvements in the verification of new deep learning models, as well as tackling some of the scalability issues that may arise when verifying complex models. In this new version of NNV, we introduce verification support for multiple deep learning models, including neural ordinary differential equations, semantic segmentation networks and recurrent neural networks, as well as a collection of reachability methods that aim to reduce the computation cost of reachability analysis of complex neural networks. We have also added direct support for standard input verification formats in the community such as VNNLIB (verification properties), and ONNX (neural networks) formats. We present a collection of experiments in which NNV verifies safety and robustness properties of feedforward, convolutional, semantic segmentation and recurrent neural networks, as well as neural ordinary differential equations and neural network control systems. Furthermore, we demonstrate the capabilities of NNV against a commercially available product in a collection of benchmarks from control systems, semantic segmentation, image classification, and time-series data.more » « less
-
The paper extends the recent star reachability method to verify the robustness of recurrent neural networks (RNNs) for use in safety-critical applications. RNNs are a popular machine learning method for various applications, but they are vulnerable to adversarial attacks, where slightly perturbing the input sequence can lead to an unexpected result. Recent notable techniques for verifying RNNs include unrolling, and invariant inference approaches. The first method has scaling issues since unrolling an RNN creates a large feedforward neural network. The second method, using invariant sets, has better scalability but can produce unknown results due to the accumulation of overapproximation errors over time. This paper introduces a complementary verification method for RNNs that is both sound and complete. A relaxation parameter can be used to convert the method into a fast overapproximation method that still provides soundness guarantees. The method is designed to be used with NNV, a tool for verifying deep neural networks and learning-enabled cyber-physical systems. Compared to state-of-the-art methods, the extended exact reachability method is 10 × faster, and the overapproximation method is 100 × to 5000 × faster.more » « less
-
Deep Neural Networks (DNNs) have become a popular instrument for solving various real-world problems. DNNs’ sophisticated structure allows them to learn complex representations and features. For this reason, Binary Neural Networks (BNNs) are widely used on edge devices, such as microcomputers. However, architecture specifics and floating-point number usage result in an increased computational operations complexity. Like other DNNs, BNNs are vulnerable to adversarial attacks; even a small perturbation to the input set may lead to an errant output. Unfortunately, only a few approaches have been proposed for verifying BNNs.This paper proposes an approach to verify BNNs on continuous input space using star reachability analysis. Our approach can compute both exact and overapproximate reachable sets of BNNs with Sign activation functions and use them for verification. The proposed approach is also efficient in constructing a complete set of counterexamples in case a network is unsafe. We implemented our approach in NNV, a neural network verification tool for DNNs and learning-enabled Cyber-Physical Systems. The experimental results show that our star-based approach is less conservative, more efficient, and scalable than the recent SMT-based method implemented in Marabou. We also provide a comparison with a quantization-based tool EEVBNN.more » « less
An official website of the United States government

Full Text Available