Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding the behavior of confined water at liquid–solid interfaces is central to numerous physical, chemical, and biological processes, yet remains experimentally challenging. Here, shallow nitrogen‐vacancy (NV) centers in diamond serve as sensors to investigate the nanoscale dynamics of interfacial water confined between the diamond surface and an overlying fluorinated oil droplet. With the help of nuclear magnetic resonance (NMR) protocols selectively sensitive to1H and19F, NVs are used to probe water and oil near the interface under ambient conditions. Comparing opposite sides of a doubly‐implanted diamond membrane — one exposed to oil, the other not — a slow, multi‐day process is uncovered in which the interfacial water layer is gradually depleted. This desorption appears to be driven by sustained interactions with the fluorinated oil and is supported by molecular dynamics simulations and surface‐sensitive X‐ray spectroscopies. These findings provide molecular‐level insight into long‐timescale hydration dynamics and underscore the power of NV‐NMR for probing liquid–solid heterointerfaces with chemical specificity.more » « less
-
Abstract Recent experiments and theoretical studies strongly indicate that water exhibits a liquid-liquid phase transition (LLPT) in the supercooled domain. An open question is how the LLPT of water can affect the properties of aqueous solutions. Here, we study the structural and thermodynamic properties of supercooled glycerol-water microdroplets at dilute conditions (χg = 3.2% glycerol mole fraction). The combination of rapid evaporative cooling with femtosecond X-ray scattering allows us to outrun crystallization and gain access to the deeply supercooled regime down toT = 229.3 K. We find that the density fluctuations of the glycerol-water solution or, equivalently, its isothermal compressibility,κT, increases upon cooling. This is confirmed by molecular dynamics simulations, which indicate that the presence of glycerol shifts the temperature of maximumκTfromT = 230 K in pure water down toT = 223 K in the solution. Our findings elucidate the interplay between the complex behavior of water, including its LLPT, and the properties of aqueous solutions at low temperatures, which can have practical consequences in cryogenic biological applications and cryopreservation techniques.more » « less
-
Abstract The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics.more » « less
-
Abstract Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densitiesρLDA ≈ 0.94 g/cm3andρHDA ≈ 1.15−1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced amedium-density amorphous ice (MDA,ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated atP ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared atP = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.more » « less
-
The molecular origins of water’s anomalous properties have long been a subject of scientific inquiry. The liquid–liquid phase transition hypothesis, which posits the existence of distinct low-density and high-density liquid states separated by a first-order phase transition terminating at a critical point, has gained increasing experimental and computational support and offers a thermodynamically consistent framework for many of water’s anomalies. However, experimental challenges in avoiding crystallization near the postulated liquid–liquid critical point have focused attention to water’s canonical glassy states: low-density and high-density amorphous ice. Here, we use two Deep Potential machine-learning models, trained on the Strongly Constrained and Appropriately Normed density functional and the highly accurate Many-Body Polarizable potential, to conduct an investigation of water’s glassy phenomenology based on quantum mechanical calculations. Despite not being explicitly trained on amorphous ices, both models accurately capture the structure and transformation of the water glasses, including their interconversion along different thermodynamic paths. Isobaric quenching of liquid water at various pressures generates a continuum of intermediate amorphous ices and density fluctuations increase near the liquid–liquid critical pressure. The glass transition temperatures of the amorphous ices produced at different pressures exhibit two distinct branches, corresponding to low-density and high-density amorphous ice behaviors, consistent with experiment and the liquid–liquid transition hypothesis. Extrapolating transformation pressures from isothermal compressions to experimental compression rates brings our simulations into excellent agreement with data. Our findings demonstrate that machine-learning potentials trained on equilibrium phases can effectively model nonequilibrium glassy behavior and pave the way for studying long-timescale, out-of-equilibrium processes with quantum mechanical accuracy.more » « lessFree, publicly-accessible full text available August 12, 2026
-
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA–HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.more » « less
An official website of the United States government
