This content will become publicly available on April 19, 2025
The potential energy landscape (PEL) formalism is a tool within statistical mechanics that has been used in the past to calculate the equation of states (EOS) of classical rigid model liquids at low temperatures, where computer simulations may be challenging. In this work, we use classical molecular dynamics (MD) simulations and the PEL formalism to calculate the EOS of the flexible q-TIP4P/F water model. This model exhibits a liquid–liquid critical point (LLCP) in the supercooled regime, at (Pc = 150 MPa, Tc = 190 K, and ρc = 1.04 g/cm3) [using the reaction field technique]. The PEL-EOS of q-TIP4P/F water and the corresponding location of the LLCP are in very good agreement with the MD simulations. We show that the PEL of q-TIP4P/F water is Gaussian, which allows us to calculate the configurational entropy of the system, Sconf. The Sconf of q-TIP4P/F water is surprisingly similar to that reported previously for rigid water models, suggesting that intramolecular flexibility does not necessarily add roughness to the PEL. We also show that the Adam–Gibbs relation, which relates the diffusion coefficient D with Sconf, holds for the flexible q-TIP4P/F water model. Overall, our results indicate that the PEL formalism can be used to study molecular systems that include molecular flexibility, the common case in standard force fields. This is not trivial since the introduction of large bending/stretching mode frequencies is problematic in classical statistical mechanics. For example, as shown previously, we find that such high frequencies lead to unphysical (negative) entropy for q-TIP4P/F water when using classical statistical mechanics (yet, the PEL formalism can be applied successfully).
more » « less- NSF-PAR ID:
- 10524844
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 15
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The transition between the gas-, supercritical-, and liquid-phase behavior is a fascinating topic, which still lacks molecular-level understanding. Recent ultrafast two-dimensional infrared spectroscopy experiments suggested that the vibrational spectroscopy of N 2 O embedded in xenon and SF 6 as solvents provides an avenue to characterize the transitions between different phases as the concentration (or density) of the solvent increases. The present work demonstrates that classical molecular dynamics (MD) simulations together with accurate interaction potentials allows us to (semi-)quantitatively describe the transition in rotational vibrational infrared spectra from the P-/R-branch line shape for the stretch vibrations of N 2 O at low solvent densities to the Q-branch-like line shapes at high densities. The results are interpreted within the classical theory of rigid-body rotation in more/less constraining environments at high/low solvent densities or based on phenomenological models for the orientational relaxation of rotational motion. It is concluded that classical MD simulations provide a powerful approach to characterize and interpret the ultrafast motion of solutes in low to high density solvents at a molecular level.more » « less
-
Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H
O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$_2$$ , isothermal compressibility$$\rho (T)$$ , and self-diffusion coefficients$$\kappa _T(T)$$ D (T ) of H O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$_2$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$C_P(T)$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$_2$$ MPa,$$P_c = 167 \pm 9$$ K, and$$T_c = 159 \pm 6$$ g/cm$$\rho _c = 1.02 \pm 0.01$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$^3$$ O is estimated to be$$_2$$ MPa,$$P_c = 176 \pm 4$$ K, and$$T_c = 177 \pm 2$$ g/cm$$\rho _c = 1.13 \pm 0.01$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$^3$$ MPa,$$P_c = 203 \pm 4$$ K, and$$T_c = 175 \pm 2$$ g/cm$$\rho _c = 1.03 \pm 0.01$$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$^3$$ for D$$T_c$$ O and, particularly, H$$_2$$ O suggest that improved water models are needed for the study of supercooled water.$$_2$$ -
The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.e., the relative solubilities of noble gas isotopes) and their sensitivities to the temperature and salinity. Here, we carry out a suite of classical molecular dynamics (MD) simulations and employ the theoretical method of quantum correction to estimate SEIEs for comparison with experimental observations. We find that classical MD simulations can accurately predict SEIEs for the isotopes of Ar, Kr, and Xe to order 0.01‰, on the scale of analytical uncertainty. However, MD simulations consistently overpredict the SEIEs of Ne and He by up to 40% of observed values. We carry out sensitivity tests at different temperatures, salinities, and pressures and employ different sets of interatomic potential parameters and water models. For all noble gas isotopes, the TIP4P water model is found to reproduce observed SEIEs more accurately than the SPC/E and TIP4P/ice models. Classical MD simulations also accurately capture the sign and approximate magnitude of temperature and salinity sensitivities of SEIEs for heavy noble gases. We find that experimental and modeled SEIEs generally follow an inverse-square mass dependence, which implies that the mean-square force experienced by a noble gas atom within a solvation shell is similar for all noble gases. This inverse-square mass proportionality is nearly exact for Ar, Kr, and Xe isotopes, but He and Ne exhibit a slightly weaker mass dependence. We hypothesize that the apparent dichotomy between He–Ne and Ar–Kr–Xe SEIEs may result from atomic size differences, whereby the smaller noble gases are more likely to spontaneously fit within cavities of water without breaking water–water H-bonds, thereby experiencing softer collisions during translation within a solvation shell. We further speculate that the overprediction of simulated He and Ne SEIEs may result from the neglection of higher-order quantum corrections or the overly stiff representation of van der Waals repulsion by the widely used Lennard-Jones 6–12 potential model. We suggest that new measurements of SEIEs of heavy and light noble gases may represent a novel set of constraints with which to refine hydrophobic solvation theories and optimize the set of interatomic potential models used in MD simulations of water and noble gases.more » « less
-
Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, D P , E P , R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I′ band profiles to facilitate a comparison to spectroscopic data through reduced χ 2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ 2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, D P , R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ 2 values.more » « less
-
The hypothesis that water has a second critical point at deeply supercooled conditions was formulated to provide a thermodynamically consistent interpretation of numerous experimental observations. A large body of work has been devoted to verifying or falsifying this hypothesis, but no unambiguous experimental proof has yet been found. Here, we use histogram reweighting and large-system scattering calculations to investigate computationally two molecular models of water, TIP4P/2005 and TIP4P/Ice, widely regarded to be among the most accurate classical force fields for this substance. We show that both models have a metastable liquid-liquid critical point at deeply supercooled conditions and that this critical point is consistent with the three-dimensional Ising universality class.