skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2223676

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent interest in urban and regional air mobility and the need to improve the aviation industry’s emissions has motivated research and development of novel propeller-driven vehicles. These vehicles range in configuration from conventional takeoff and landing designs to complex rotorcraft that transition between vertical and horizontal flight. These designs must be optimized to ensure optimal efficiency throughout their missions, leveraging the tightly coupled nature of propeller-wing interaction. In this work, we study the NASA tiltwing concept vehicle wing with varying numbers of propellers, ranging from no propellers to five propellers evenly spaced along the wing. Using aerodynamic shape optimization, we optimize the wing shapes for each propeller-wing configuration, minimizing the wing drag. These optimizations are carried out with DAFoam, a discrete adjoint implementation of OpenFOAM, embedded within OpenMDAO and the MPhys optimization framework. The optimizations show that the lowest drag configuration is a single propeller mounted at the wing tip. Increasing the number of propellers slightly increases drag compared to the single propeller configuration. However, aerodynamic shape optimization considering propeller-wing interaction yields a negligible benefit compared to aerodynamic optimization of an isolated wing that is subsequently trimmed to a desired flight condition in the presence of a propeller. 
    more » « less
    Free, publicly-accessible full text available November 19, 2026
  2. Field inversion machine learning (FIML) has the advantages of model consistency and low data dependency and has been used to augment imperfect turbulence models. However, the solver-intrusive field inversion has a high entry bar, and existing FIML studies focused on improving only steady-state or time-averaged periodic flow predictions. To break this limit, this paper develops an open-source FIML framework for time-accurate unsteady flow, where both spatial and temporal variations of flow are of interest. We augment a Reynolds-Averaged Navier–Stokes (RANS) turbulence model's production term with a scalar field. We then integrate a neural network (NN) model into the flow solver to compute the above augmentation scalar field based on local flow features at each time step. Finally, we optimize the weights and biases of the built-in NN model to minimize the regulated spatial-temporal prediction error between the augmented flow solver and reference data. We consider the spatial-temporal evolution of unsteady flow over a 45° ramp and use only the surface pressure as the training data. The unsteady-FIML-trained model accurately predicts the spatial-temporal variations of unsteady flow fields. In addition, the trained model exhibits reasonably good prediction accuracy for various ramp angles, Reynolds numbers, and flow variables (e.g., velocity fields) that are not used in training, highlighting its generalizability. The FIML capability has been integrated into our open-source framework DAFoam. It has the potential to train more accurate RANS turbulence models for other unsteady flow phenomena, such as wind gust response, bubbly flow, and particle dispersion in the atmosphere. 
    more » « less
  3. This paper develops a control co-design (CCD) framework to simultaneously optimize the spacecraft’s trajectory and onboard system (rocket engine) and quantify its benefit. An open-loop optimal control problem (two-finite burn Mars missions) is used as the benchmark, and the engine design considers the combustion equilibrium and nozzle geometry. The objective function is the fuel burn. The design variables are the trajectory control parameters (such as burn times, burn directions, and time of flight), initial fuel mass, and engine design parameters (such as throat area, mixture ratio, and chamber pressure). The constraints include the final velocities and positions of spacecraft. Single-point optimizations are conducted for three departure dates in May, July, and September 2020. A multipoint optimization is also performed to balance the engine performance for these dates with 49 design variables and 20 constraints. It is found that the CCD optimizations exhibit 22–28% more fuel burn reduction than the trajectory-only optimization with fixed engine parameters and 16–20% more fuel burn reduction than the decoupled trajectory-engine optimization. The proposed CCD optimization framework can be extended to more spacecraft trajectory control parameters and onboard systems and has the potential to design more efficient spacecraft missions. 
    more » « less