Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report a novel approach for dynamically tuning and reconfiguring microwave bandpass filters (BPFs) based on optically controlled switching elements using photoconductivity modulation in semiconductors. For a prototype demonstration, a BPF circuit featuring a second‐order design using two closely coupled split‐ring resonators embedded with multiple silicon chips (as switching elements) was designed, fabricated, and characterized. The silicon chips were optically linked to fiber‐coupled laser diodes (808 nm light) for switching/modulation, enabling dynamic tuning and reconfiguring of the BPF without any complex biasing circuits. By turning on and off the two laser diodes simultaneously, the BPF response can be dynamically reconfigured between bandpass and broadband suppression. Moreover, the attenuation level of the passband can be continuously adjusted (from 0.7 to 22 dB at the center frequency of 3.03 GHz) by varying the light intensity from 0 to 40 W/cm2. The tuning/reconfiguring 3‐dB bandwidth is estimated to be ~200 kHz. In addition, the potential and limitations of the proposed approach using photoconductivity modulation are discussed. With the strong tuning/reconfiguring capability demonstrated and the great potential for high‐frequency operation, this approach holds promise for the development of more advanced tunable filters and other adaptive circuits for next‐generation sensing, imaging, and communication systems.more » « less
- 
            Abstract The authors report a novel approach for designing tunable and reconfigurable bandstop filters by employing bias‐free optically‐controlled photoconductive radio frequency (RF) switching elements. To verify the effectiveness of the approach, a bandstop filter with two stopbands centred at 4.05 and 4.75 GHz was designed using a split‐ring‐coupled microstrip transmission line on RO3010 substrates. To enable reconfigurability, a micromachined Si chip with a thickness of ∼73 μm was embedded in the gap of each resonator. The tuning and reconfiguring of the filter are accomplished by selectively illuminating the Si chips using fibre‐coupled laser diodes with a wavelength of 808 nm. By turning on and off each laser diode, the filter stop bands can be dynamically reconfigured. In addition, the suppression of each stop band can be continuously and independently tuned by changing the light intensity from 0 to 20 W/cm2. With geometric scaling, this approach is promising for realizing a novel class of compact and high‐performance tunable and/or reconfigurable circuits from the microwave to mmW‐THz region.more » « less
- 
            We report what we believe to be a novel and unique approach for achieving high-performance and broadband THz phase shifting based on spatially-resolved photoconductivity modulation (SRPM). By changing the illumination area on a hybrid Au-Ge mesa-array (AGMA) structure in front of an indium tin oxide (ITO) layer for local photoconductivity modulation, the phase difference between the incident- and reflected-waves can be tuned nearly continuously with extremely low reflection loss. For a prototype demonstration, a photonically-driven THz phase shifting device based on the WR-5.1 (140-220 GHz) waveguide configuration was designed, modeled and simulated. To achieve phase tuning in the range of 0° to -180° at 180 GHz (band center frequency), a mesa-array consisting of 12 × 6 unit cells (each 105 μm × 105 μm) was designed, and a distancedof 250 μm between the AGMA and ITO was used. The SRPM is accomplished using computer-generated light patterns from a closely-coupled micro-LED array for through-ITO illumination, without the need for any biasing circuitry. Full wave simulation results have shown that pseudo-continuous and broadband phase shifting can be achieved in the entire WR-5.1 band, and a shifting range of 0° to -180° at 180 GHz can be realized as designed. In addition, by using light patterns of different combinations of vertical strips, a fine phase tuning step as small as ∼0.05° can be demonstrated. For all phase tuning states, the simulated reflection loss is generally less than 1 dB with low loss variation. The proposed technology for high-performance THz phase modulation is promising and powerful, while offering far more design flexibility and frequency scalability than the current state-of-the-art since it requires no biasing wires thus eliminating parasitic-related performance degradation. Therefore, this technology is suitable for the development of large-scale THz phased-arrays, reconfigurable reflectarrays, and tunable metasurfaces for dynamic beam steering/forming required in next generation (6G or beyond) wireless communications.more » « less
- 
            Free, publicly-accessible full text available August 28, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
