Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
In recent years, the field of structural biology has seen remarkable advancements, particularly in modeling of protein tertiary and quaternary structures. The AlphaFold deep learning approach revolutionized protein structure prediction by achieving near‐experimental accuracy on many targets. This paper presents a detailed account of structural modeling of oligomeric targets in Round 55 of CAPRI by combining deep learning‐based predictions (AlphaFold2 multimer pipeline) with traditional docking techniques in a hybrid approach to protein–protein docking. To complement the AlphaFold models generated for the given oligomeric state of the targets, we built docking predictions by combining models generated for lower‐oligomeric states—dimers for trimeric targets and trimers/dimers for tetrameric targets. In addition, we used a template‐based docking procedure applied to AlphaFold predicted structures of the monomers. We analyzed the clustering of the generated AlphaFold models, the confidence in the prediction of intra‐ and inter‐chain residue‐residue contacts, and the correlation of the AlphaFold predictions stability with the quality of the submitted models.more » « lessFree, publicly-accessible full text available June 6, 2026
-
The diffusion of proteins is significantly affected by macromolecular crowding. Molecular simulations accounting for protein interactions at atomic resolution are useful for characterizing the diffusion patterns in crowded environments. We present a comprehensive analysis of protein diffusion under different crowding conditions based on our recent docking-based approach simulating an intracellular crowded environment by sampling the intermolecular energy landscape using the Markov Chain Monte Carlo protocol. The procedure was extensively benchmarked, and the results are in very good agreement with the available experimental and theoretical data. The translational and rotational diffusion rates were determined for different types of proteins under crowding conditions in a broad range of concentrations. A protein system representing most abundant protein types in the E. coli cytoplasm was simulated, as well as large systems of other proteins of varying sizes in heterogeneous and self-crowding solutions. Dynamics of individual proteins was analyzed as a function of concentration and different diffusion rates in homogeneous and heterogeneous crowding. Smaller proteins diffused faster in heterogeneous crowding of larger molecules, compared to their diffusion in the self-crowded solution. Larger proteins displayed the opposite behavior, diffusing faster in the self-crowded solution. The results show the predictive power of our structure-based simulation approach for long timescales of cell-size systems at atomic resolution.more » « less
An official website of the United States government
