skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225215

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available May 24, 2026
  3. A range of ultrasonic techniques associated with the nondestructive evaluation of metals involves the propagation of low-frequency elastic waves. Metals that are isotropic and homogeneous in the macroscopic length scale contain elastic heterogeneities, such as grain boundaries within the microstructures. Ultrasonic waves propagating through such microstructures get scattered from the grain boundaries. As a result, the propagating ultrasound attenuates. The mass density and the elastic anisotropy in each constituent grain govern the degree of heterogeneity in the polycrystalline aggregates. Existing elastodynamic models consider first-order scattering effects from grain boundaries. This paper presents the improved attenuation formulae, for the first time, by including the next order of grain scattering effects. Results from investigating 759 polycrystals reveal a positive correlation between the effects of higher-order scattering from grain boundaries and the degree of heterogeneity. Thus, higher-order grain scattering effects are now known. These results motivate further investigation into higher frequencies and strongly scattering alloys in the future. 
    more » « less