skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2025

Title: Improved Formulae for Low-Frequency Ultrasonic Attenuation in Metals
A range of ultrasonic techniques associated with the nondestructive evaluation of metals involves the propagation of low-frequency elastic waves. Metals that are isotropic and homogeneous in the macroscopic length scale contain elastic heterogeneities, such as grain boundaries within the microstructures. Ultrasonic waves propagating through such microstructures get scattered from the grain boundaries. As a result, the propagating ultrasound attenuates. The mass density and the elastic anisotropy in each constituent grain govern the degree of heterogeneity in the polycrystalline aggregates. Existing elastodynamic models consider first-order scattering effects from grain boundaries. This paper presents the improved attenuation formulae, for the first time, by including the next order of grain scattering effects. Results from investigating 759 polycrystals reveal a positive correlation between the effects of higher-order scattering from grain boundaries and the degree of heterogeneity. Thus, higher-order grain scattering effects are now known. These results motivate further investigation into higher frequencies and strongly scattering alloys in the future.  more » « less
Award ID(s):
2225215
PAR ID:
10529350
Author(s) / Creator(s):
;
Publisher / Repository:
Materials Evaluation
Date Published:
Journal Name:
Materials Evaluation
Volume:
82
Issue:
6
ISSN:
0025-5327
Page Range / eLocation ID:
34 to 40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work discusses new methodologies for identifying the grain boundaries in color images of metallic microstructures and the quantification of their grain topology. Grain boundaries have a large impact on the macro-scale material properties. Particularly, this work employs the experimental microstructure data of Titanium-Aluminum alloys, which can be used for various aerospace components owing to their outstanding mechanical performance in elevated temperatures. The grain topology of these metallic microstructures is quantified using the concept of shape moment invariants. In order to capture the grains using the shape moment invariants, it is necessary to identify the grain boundaries and separate them from their respective grains. We present two methodologies to detect the grain boundaries. The first method is the tolerance-based neighbor analysis. The second method focuses on creating three-dimensional space of pixel intensity values based on the three color channels and measuring the Euclidean distance to separate different grains. Additionally, since the grain boundaries may not possess the same material properties as the grain itself, this work investigates the effect of including the grain boundaries when determining the homogenized material properties of the given microstructure. To generate adequate statistical information, microstructures are reconstructed from the experimental data using the Markov Random Field (MRF) method. Upon separating the grains, we use the shape moment invariants to quantify the shapes of different grains. Using the shape moment invariants and the experimental material property values, three neural network functions are developed to investigate the effects of grain boundaries on material property predictions. 
    more » « less
  2. Abstract The operation of fracture, diffusion, and intracrystalline‐plastic micromechanisms during semibrittle deformation of rock is directly relevant to understanding mechanical behavior across the brittle‐plastic transition in the crust. An outstanding question is whether (1) the micromechanisms of semibrittle flow can be considered to operate independently, as represented in typical crustal strength profiles across the brittle to plastic transition, or (2) the micromechanisms are coupled such that the transition is represented by a distinct rheology with dependency on effective pressure, temperature, and strain rate. We employ triaxial stress‐cycling experiments to investigate elastic‐plastic and viscoelastic behaviors during semibrittle flow in two distinctly different monomineralic, polycrystalline, synthetic salt‐rocks. During semibrittle flow at high differential stress, granular, low‐porosity, work‐hardened salt‐rocks deform predominantly by grain‐boundary sliding and wing‐crack opening accompanied by minor intragranular dislocation glide. In contrast, fully annealed, near‐zero porosity salt‐rocks flow at lower differential stress by intragranular dislocation glide accompanied by grain‐boundary sliding and opening. Grain‐boundary sliding is frictional during semibrittle flow at higher strain rates, but the associated dispersal of water from fluid inclusions along boundaries can activate fluid‐assisted diffusional sliding at lower strain rates. Changes in elastic properties with semibrittle flow largely reflect activation of sliding along closed grain boundaries. Observed microstructures, pronounced hysteresis and anelasticity during cyclic stressing after semibrittle flow, and stress relaxation behaviors indicate coupled operation of micromechanisms leading to a distinct rheology (hypothesis 2 above). 
    more » « less
  3. Abstract Earth's foreshock is filled with backstreaming particles that can generate a variety of waves and foreshock transients. According to recent studies, these particles can be further accelerated while being scattered by field fluctuations, including waves, inside foreshock transients, contributing to particle acceleration at the parent bow shock. The properties of these waves and how they interact with particles and affect particle acceleration inside foreshock transients are still unclear, however. Here we take the first step to study one important type of these waves, whistler waves. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations and employ multiple case studies to investigate the properties of whistler waves in the compressional boundaries of foreshock transients where THEMIS wave burst mode is triggered. We show that the whistler waves are quasi parallel propagating with bidirectional Poynting vectors, suggesting that they are locally generated. We focus on how they interact with electrons. We show that the diffusion surfaces for these waves in the electron velocity space match the observed electron phase space density distribution contours better when the modeled pitch angle diffusion coefficients from these waves are higher. We also demonstrate that higher‐energy electrons are more likely to be scattered by whistler waves. Our results suggest that whistler waves are important for scattering tens to hundreds of electronvolt electrons inside foreshock transients and elucidate electron dynamics and whistler wave properties in such environments. 
    more » « less
  4. Abstract The study of grain boundaries is the foundation to understanding many of the intrinsic physical properties of bulk metals. Here, the preparation of microscale thin‐film gold bicrystals, using rapid melt growth, is presented as a model system for studies of single grain boundaries. This material platform utilizes standard fabrication tools and supports the high‐yield growth of thousands of bicrystals per wafer, each containing a grain boundary with a unique <111> tilt character. The crystal growth dynamics of the gold grains in each bicrystal are mediated by platinum gradients, which originate from the gold–platinum seeds responsible for gold crystal nucleation. This crystallization mechanism leads to a decoupling between crystal nucleation and crystal growth, and it ensures that the grain boundaries form at the middle of the gold microstructures and possess a uniform distribution of misorientation angles. It is envisioned that these bicrystals will enable the systematic study of the electrical, optical, chemical, thermal, and mechanical properties of individual grain boundary types. 
    more » « less
  5. The sensitivity of recrystallization kinetics in metals to the heterogeneity of microstructure and deformation history is a widely accepted experimental fact. However, most of the available recrystallization models employ either a mean field approach or use grain-averaged parameters, and thus neglecting the mesoscopic heterogeneity induced by prior deformation. In the present study, we investigate the impact of deformation-induced dislocation (subgrain) structure on the kinetics of recrystallization in metals using the phase-field approach. The primary focus here is upon the role of dislocation cell boundaries. The free energy formulation of the phase-field model accounts for the heterogeneity of the microstructure by assigning localized energy to the resulting dislocation microstructure realizations generated from experimental data. These microstructure realizations are created using the universal scaling laws for the spacing and the misorientation angles of both the geometrically necessary and incidental dislocation boundaries. The resulting free energy is used into an Allen-Cahn based model of recrystallization kinetics, which are solved using the finite element method. The solutions thus obtained shed light on the critical role of the spatial heterogeneity of deformation in the non-smooth growth of recrystallization nuclei and on the final grain structure. The results showed that, in agreement with experiment, the morphology of recrystallization front exhibits protrusions and retrusions. By resolving the subgrain structure, the presented algorithm paves the way for developing predictive kinetic models that fully account for the deformed state of recrystallizing metals. 
    more » « less