skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225306

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this project summary, we briefly describe the culturally responsive gamified activity that taught students about the engineering design process. We provide an overview of its effectiveness of how the activity supported migratory adolescents’ engineering interest, self-efficacy, aspirational engineering identity, and how it engendered positive perceptions of using engineering as a tool for social justice. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  2. Broadening participation in engineering needs to be different from filling the pipeline or national competitiveness. We should seek to empower students to use engineering knowledge and skills to create social change, address injustices, or develop problem-solving skills that can help transform lives. This study examined how migratory high school students developed beliefs about engineering’s capacity for social impact through participation in an activity where they learned how the engineering design process could be used to solve a need impacting agricultural workers. Specifically, we investigated how students' interest in engineering, their self-efficacy in applying engineering concepts, and the development of an identity as a future engineer influence the formation of their beliefs about their capacity to act purposefully and effectively using engineering practices. Migratory high school students represent an overlooked and underserved segment of students in U.S. schools. These students, often from Latinx backgrounds, remain underrepresented in engineering fields. To investigate the development of “engineering for social impact” among migratory high school students, we designed and implemented a culturally responsive and gamified engineering design activity. The activity aimed to connect engineering concepts to students’ cultural backgrounds and experiences while leveraging game-based learning elements to increase engagement. We administered pre- and post-surveys to measure changes in students’ engineering impact, interest, self-efficacy, and identity (n = 235). We used a multiple linear regression model to examine the relationships. Our results show that migratory students’ engineering interest and self-efficacy significantly supported the development of their belief that engineering could be a tool for social impact. Specifically, as students’ engineering interest increased, their perception that engineering could be used as a practice to address injustices significantly increased by 0.335 points. Similarly, as students’ engineering self-efficacy beliefs increased, that led to a significant increase of 0.346 points in their social impact beliefs. However, being recognized as someone who can do engineering (i.e., recognition beliefs) did not have a significant effect. The model explains approximately 46.7% of the variance in students’ beliefs about engineering as a tool for social impact. Our findings suggest that students’ engineering for social impact beliefs develop through experiences that enable them to see themselves as engineers and use engineering knowledge in meaningful ways. Our culturally responsive and gamified approach positively influenced students’ beliefs by fostering both interest and self-efficacy in engineering contexts. The results underscore the importance of creating learning environments and activities that not only spark interest in engineering but also build students’ confidence in their abilities to engage in engineering practices. For migratory Latinx high school students who face unique challenges in their educational journeys, cultivating engineering for social impact may be particularly crucial in garnering interest in the field. This study contributes to the growing body of research on the importance of connecting engineering to social and cultural context and provides insights into effective strategies for supporting underrepresented students in engineering. Future work should explore the longitudinal effects of such interventions and investigate additional factors that may influence the development of students’ social impact beliefs among migratory students. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  3. Interpersonal skills are essential to engineers’ work as they regularly manage large projects, engage with people, collaborate in teams, and offer vital services to society. This study explores how twelve undergraduate students from migratory/seasonal farmworker (MSFW) backgrounds use their funds of knowledge in the form of interpersonal skills in engineering. An hour-long semi-structured interview protocol was designed and used to understand the funds of knowledge participants brought into their respective engineering classrooms. Using thematic analysis, we found that MSFW students accumulated multiple interpersonal skills, such as teamwork, organizational skills, empathetic practices, work ethic, and communication. This work adds to the existing literature on funds of knowledge and puts MSFW students and their unique assets in engineering at the forefront. 
    more » « less