skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2225860

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Point-Based Neural Rendering (PBNR) is emerging as a promising class of rendering techniques, which are permeating all aspects of society, driven by a growing demand for real-time, photorealistic rendering in AR/VR and digital twins. Achieving real-time PBNR on mobile devices is challenging. This paper proposes MetaSapiens, a PBNR system that for the first time delivers real-time neural rendering on mobile devices while maintaining human visual quality. MetaSapiens combines three techniques. First, we present an efficiencyaware pruning technique to optimize rendering speed. Second, we introduce a Foveated Rendering (FR) method for PBNR, leveraging humans’ low visual acuity in peripheral regions to relax rendering quality and improve rendering speed. Finally, we propose an accelerator design for FR, addressing the load imbalance issue in (FR-based) PBNR. Our evaluation shows that our system achieves an order of magnitude speedup over existing PBNR models without sacrificing subjective visual quality, as confirmed by a user study. The code and demo are available at: https://horizonlab.org/metasapiens/. 
    more » « less
    Free, publicly-accessible full text available March 30, 2026
  2. Color programmers manipulate lights, materials, and the resulting colors from light-material interactions. Existing libraries for color programming provide only a thin layer of abstraction around matrix operations. Color programs are, thus, vulnerable to bugs arising from mathematically permissible but physically meaningless matrix computations. Correct implementations are difficult to write and optimize. We introduce CoolerSpace to facilitate physically correct and computationally efficient color programming. CoolerSpace raises the level of abstraction of color programming by allowing programmers to focus on describing the logic of color physics. Correctness and efficiency are handled by CoolerSpace. The type system in CoolerSpace assigns physical meaning and dimensions to user-defined objects. The typing rules permit only legal computations informed by color physics and perception. Along with type checking, CoolerSpace also generates performance-optimized programs using equality saturation. CoolerSpace is implemented as a Python library and compiles to ONNX, a common intermediate representation for tensor computations. CoolerSpace not only prevents common errors in color programming, but also does so without run-time overhead: even unoptimized CoolerSpace programs out-perform existing Python-based color programming systems by up to 5.7 times; our optimizations provide up to an additional 1.4 times speed-up. 
    more » « less
  3. Battery life is an increasingly urgent challenge for today's untethered VR and AR devices. However, the power efficiency of head-mounted displays is naturally at odds with growing computational requirements driven by better resolution, refresh rate, and dynamic ranges, all of which reduce the sustained usage time of untethered AR/VR devices. For instance, the Oculus Quest 2, under a fully-charged battery, can sustain only 2 to 3 hours of operation time. Prior display power reduction techniques mostly target smartphone displays. Directly applying smartphone display power reduction techniques, however, degrades the visual perception in AR/VR with noticeable artifacts. For instance, the "power-saving mode" on smartphones uniformly lowers the pixel luminance across the display and, as a result, presents an overall darkened visual perception to users if directly applied to VR content. Our key insight is that VR display power reduction must be cognizant of the gaze-contingent nature of high field-of-view VR displays. To that end, we present a gaze-contingent system that, without degrading luminance, minimizes the display power consumption while preserving high visual fidelity when users actively view immersive video sequences. This is enabled by constructing 1) a gaze-contingent color discrimination model through psychophysical studies, and 2) a display power model (with respect to pixel color) through real-device measurements. Critically, due to the careful design decisions made in constructing the two models, our algorithm is cast as a constrained optimization problem with a closed-form solution, which can be implemented as a real-time, image-space shader. We evaluate our system using a series of psychophysical studies and large-scale analyses on natural images. Experiment results show that our system reduces the display power by as much as 24% (14% on average) with little to no perceptual fidelity degradation. 
    more » « less