skip to main content

This content will become publicly available on December 1, 2023

Title: Color-Perception-Guided Display Power Reduction for Virtual Reality
Battery life is an increasingly urgent challenge for today's untethered VR and AR devices. However, the power efficiency of head-mounted displays is naturally at odds with growing computational requirements driven by better resolution, refresh rate, and dynamic ranges, all of which reduce the sustained usage time of untethered AR/VR devices. For instance, the Oculus Quest 2, under a fully-charged battery, can sustain only 2 to 3 hours of operation time. Prior display power reduction techniques mostly target smartphone displays. Directly applying smartphone display power reduction techniques, however, degrades the visual perception in AR/VR with noticeable artifacts. For instance, the "power-saving mode" on smartphones uniformly lowers the pixel luminance across the display and, as a result, presents an overall darkened visual perception to users if directly applied to VR content. Our key insight is that VR display power reduction must be cognizant of the gaze-contingent nature of high field-of-view VR displays. To that end, we present a gaze-contingent system that, without degrading luminance, minimizes the display power consumption while preserving high visual fidelity when users actively view immersive video sequences. This is enabled by constructing 1) a gaze-contingent color discrimination model through psychophysical studies, and 2) a display power model (with more » respect to pixel color) through real-device measurements. Critically, due to the careful design decisions made in constructing the two models, our algorithm is cast as a constrained optimization problem with a closed-form solution, which can be implemented as a real-time, image-space shader. We evaluate our system using a series of psychophysical studies and large-scale analyses on natural images. Experiment results show that our system reduces the display power by as much as 24% (14% on average) with little to no perceptual fidelity degradation. « less
; ; ; ; ;
Award ID(s):
2044963 2225860
Publication Date:
Journal Name:
ACM Transactions on Graphics
Page Range or eLocation-ID:
1 to 16
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual images simultaneously, contributing to an immersive experience in interactions and visualization. Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic optical elements in the form of advanced grating structures have been utilized to provide light-weight solutions instead of bulky helmet-type headsets. However current waveguide displays often have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication processes of lower yield. In addition, current AR displays often have vergence-accommodation conflict in the augmented and virtual images, resulting in focusing-visual fatigue and eye strain. Here we report metasurface optical elements designed and experimentally implemented as a platform solution to overcome these limitations. Through careful dispersion control in the excited propagation and diffraction modes, we design and implement our high-resolution full-color prototype, via the combination of analytical–numerical simulations, nanofabrication and device measurements. With the metasurface control of the light propagation, our prototype device achieves a 1080-pixel resolution, a field-of-view more than 40°, an overall input–output efficiency more than 1%, and addresses the vergence-accommodation conflict through our focal-free implementation. Furthermore, our AR waveguide is achieved in a single metasurface-waveguide layer, aidingmore »the scalability and process yield control.« less
  2. Smartphones have recently become a popular platform for deploying the computation-intensive virtual reality (VR) applications, such as immersive video streaming (a.k.a., 360-degree video streaming). One specific challenge involving the smartphone-based head mounted display (HMD) is to reduce the potentially huge power consumption caused by the immersive video. To address this challenge, we first conduct an empirical power measurement study on a typical smartphone immersive streaming system, which identifies the major power consumption sources. Then, we develop QuRate, a quality-aware and user-centric frame rate adaptation mechanism to tackle the power consumption issue in immersive video streaming. QuRate optimizes the immersive video power consumption by modeling the correlation between the perceivable video quality and the user behavior. Specifically, QuRate builds on top of the user’s reduced level of concentration on the video frames during view switching and dynamically adjusts the frame rate without impacting the perceivable video quality. We evaluate QuRate with a comprehensive set of experiments involving 5 smartphones, 21 users, and 6 immersive videos using empirical user head movement traces. Our experimental results demonstrate that QuRate is capable of extending the smartphone battery life by up to 1.24X while maintaining the perceivable video quality during immersive video streaming. Also, wemore »conduct an Institutional Review Board (IRB)- approved subjective user study to further validate the minimum video quality impact caused by QuRate.« less
  3. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS inmore »spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts.« less
  4. While tremendous advances in visual and auditory realism have been made for virtual and augmented reality (VR/AR), introducing a plausible sense of physicality into the virtual world remains challenging. Closing the gap between real-world physicality and immersive virtual experience requires a closed interaction loop: applying user-exerted physical forces to the virtual environment and generating haptic sensations back to the users. However, existing VR/AR solutions either completely ignore the force inputs from the users or rely on obtrusive sensing devices that compromise user experience. By identifying users' muscle activation patterns while engaging in VR/AR, we design a learning-based neural interface for natural and intuitive force inputs. Specifically, we show that lightweight electromyography sensors, resting non-invasively on users' forearm skin, inform and establish a robust understanding of their complex hand activities. Fuelled by a neural-network-based model, our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration. Through an interactive psychophysical study, we show that human perception of virtual objects' physical properties, such as stiffness, can be significantly enhanced by our interface. We further demonstrate that our interface enables ubiquitous control via finger tapping. Ultimately, we envision our findings to push forward researchmore »towards more realistic physicality in future VR/AR.« less
  5. Virtual reality sickness typically results from visual-vestibular conflict. Because self-motion from optical flow is driven most strongly by motion at the periphery of the retina, reducing the user’s field-of-view (FOV) during locomotion has proven to be an effective strategy to minimize visual vestibular conflict and VR sickness. Current FOV restrictor implementations reduce the user’s FOV by rendering a restrictor whose center is fixed at the center of the head mounted display (HMD), which is effective when the user’s eye gaze is aligned with head gaze. However, during eccentric eye gaze, users may look at the FOV restrictor itself, exposing them to peripheral optical flow which could lead to increased VR sickness. To address these limitations, we develop a foveated FOV restrictor and we explore the effect of dynamically moving the center of the FOV restrictor according to the user’s eye gaze position. We conducted a user study (n=22) where each participant uses a foveated FOV restrictor and a head-fixed FOV restrictor while navigating a virtual environment. We found no statistically significant difference in VR sickness measures or noticeability between both restrictors. However, there was a significant difference in eye gaze behavior, as measured by eye gaze dispersion, with the foveatedmore »FOV restrictor allowing participants to have a wider visual scan area compared to the head-fixed FOV restrictor, which confined their eye gaze to the center of the FOV.« less