Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our extensive experiments reveal that existing key-value stores (KVSs) achieve high performance at the expense of a huge memory footprint that is often impractical or unacceptable. Even with the emerging ultra-fast byte-addressable persistent memory (PM), KVSs fall far short of delivering the high performance promised by PM's superior I/O bandwidth. To find the root causes and bridge the huge performance/memory-footprint gap, we revisit the architectural features of two representative indexing mechanisms (single-stage and multi-stage) and propose a three-stage KVS called FluidKV. FluidKV effectively consolidates these indexes by fast and seamlessly running incoming key-value request stream from the write-concurrent frontend stage to the memory-efficient backend stage across an intermediate stage. FluidKV also designs important enabling techniques, such as thread-exclusive logging, PM-friendly KV-block structures, and dual-grained indexes, to fully utilize both parallel-processing and high-bandwidth capabilities of ultra-fast storage hardware while reducing the overhead. We implemented a FluidKV prototype and evaluated it under a variety of workloads. The results show that FluidKV outperforms the state-of-the-art PM-aware KVSs, including ListDB and FlatStore with different indexes, by up to 9× and 3.9× in write and read throughput respectively, while cutting up to 90% of the DRAM footprint.more » « less
-
Unexpected long query latency of a database system can cause domino effects on all the upstream services and se- verely degrade end users’ experience with unpredicted long waits, resulting in an increasing number of users disengaged with the services and thus leading to a high user disengage- ment ratio (UDR). A high UDR usually translates to reduced revenue for service providers. This paper proposes UTSLO, a UDR-oriented SLO guaranteed system, which enables a database system to support multi-tenant UDR targets in a cost-effective fashion through UDR-oriented capacity plan- ning and dynamic UDR target enforcement. The former aims to estimate the feasibility of UDR targets while the latter dynamically tracks and regulates per-connection query la- tency distribution needed for accurate UDR target guarantee. In UTSLO, the database service capacity can be fully ex- ploited to efficiently accommodate tenants while minimizing resources required for UDR target guarantee.more » « less
-
A primary design objective for Data-intensive User- facing (DU) services for cloud and edge computing is to maximize query throughput, while meeting query tail latency Service Level Objectives (SLOs) for individual queries. Unfortunately, the existing solutions fall short of achieving this design objective, which we argue, is largely attributed to the fact that they fail to take the query fanout explicitly into account. In this paper, we propose TailGuard based on a Tail-latency-SLO-and- Fanout-aware Earliest-Deadline-First Queuing policy (TF-EDFQ) for task queuing at individual task servers the query tasks are fanned out to. With the task queuing deadline for each task being derived based on both query tail latency SLO and query fanout, TailGuard takes an important first step towards achieving the design objective. TailGuard is evaluated against First-In-First-Out (FIFO) task queuing, task PRIority Queuing (PRIQ) and Tail-latency-SLO-aware EDFQ (T-EDFQ) policies by simulation. It is driven by three types of applications in the Tailbench benchmark suite. The results demonstrate that TailGuard can improve resource utilization by up to 80%, while meeting the targeted tail latency SLOs, as compared with the other three policies. TailGuard is also implemented and tested in a highly heterogeneous Sensing-as-a-Service (SaS) testbed for a data sensing service, with test results in line with the other ones.more » « less