skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2226614

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 27, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. The widespread industrial and consumer use of per- and polyfluoroalkyl substances (PFAS) has led to their persistent presence in the environment, driven by their robust carbon-fluorine bonds and bioaccumulative properties. This contamination poses serious health and ecological risks, making real-time, selective, and sensitive detection of PFAS critical for effective mitigation. We demonstrate a selective and sensitive detection of vapor-phase PFAS using photothermal cantilever deflection spectroscopy (PCDS), achieving a detection limit of ∼30 pg. This method eliminates the need for chemically selective coatings, relying instead on the physisorption of PFAS molecules onto a bi-material microcantilever. By leveraging mid-infrared absorption and monitoring both cantilever bending and resonance frequency, PCDS enables simultaneous chemical identification and mass quantification. The technique demonstrates high selectivity in the mid-infrared fingerprint region and rapid desorption of analytes, offering significant advantages for real-time environmental monitoring and public health protection. 
    more » « less