Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Purpose: Previous research points to a complex relation between social media use and mental health, with open questions remaining with respect to mediation pathways and potential sociodemographic moderators. The present research investigated the extent to which experiences of cyberbullying victimization mediate the link between greater social media use and poorer mental health in adults and whether such indirect effects are moderated by gender or age. Participants and methods: As part of a larger study, US adults (N = 502) completed an online survey that included measures of degree of social media use, cyberbullying victimization, depression, anxiety, substance use, and sociodemographic characteristics including gender and age. Results: A series of moderated mediation models revealed a robust indirect effect of cyberbullying victimization on the relation between degree of social media use and mental health, such that greater social media use was associated with higher levels of cyberbullying victimization and greater cyberbullying victimization was associated with increased depression, anxiety, and likelihood of substance use. There was no evidence that the mediation effects varied between men and women. Age did, however, moderate the mediation effects for anxiety and likelihood of substance use, with stronger mediation effects emerging for younger compared to older adults. Conclusion: Our findings underscore the importance of empirical investigations that shed a more nuanced light on the complex relation between social media and mental health.more » « lessFree, publicly-accessible full text available November 22, 2025
- 
            Anti-Asian prejudice increased during the COVID-19 pandemic, evidenced by a rise in physical attacks on individuals of Asian descent. Concurrently, as many governments enacted stay-at-home mandates, the spread of anti-Asian content increased in online spaces, including social media platforms such as Twitter. In the present study, we investigated temporal and geographic patterns in the prevalence of social media content relevant to anti-Asian prejudice within the U.S. and worldwide. Specifically, we used the Twitter Data Collection API to query over 13 million tweets posted during the first 15 months of the pandemic (i.e., from January 30, 2020 to April 30, 2021), for both negative (e.g., #kungflu) and positive (e.g., #stopAAPIhate) hashtags and keywords related to anti-Asian prejudice. Results of a range of exploratory and descriptive analyses offer novel insights. For instance, in the U.S., results from a burst analysis indicated that the prevalence of negative (anti-Asian) and positive (counter-hate) messages fluctuated over time in patterns that largely mirrored salient events relevant to COVID-19 (e.g., political tweets, highly-visible hate crimes targeting Asians). Other representative findings include geographic differences in the frequency of negative and positive keywords that shed light on the regions within the U.S. and the countries worldwide in which negative and positive messages were most frequent. Additional analyses revealed informative patterns in the prevalence of original tweets versus retweets, the co-occurrence of negative and positive content within a tweet, and fluctuations in content in relation to the number of new COVID-19 cases and reported COVID-related deaths. Together,more » « less
- 
            Social media continues to have an impact on the trajectory of humanity. However, its introduction has also weaponized keyboards, allowing the abusive language normally reserved for in-person bullying to jump onto the screen, i.e., cyberbullying. Cyberbullying poses a significant threat to adolescents globally, affecting the mental health and well-being of many. A group that is particularly at risk is the LGBTQ+ community, as researchers have uncovered a strong correlation between identifying as LGBTQ+ and suffering from greater online harassment. Therefore, it is critical to develop machine learning models that can accurately discern cyberbullying incidents as they happen to LGBTQ+ members. The aim of this study is to compare the efficacy of several transformer models in identifying cyberbullying targeting LGBTQ+ individuals. We seek to determine the relative merits and demerits of these existing methods in addressing complex and subtle kinds of cyberbullying by assessing their effectiveness with real social media data.more » « less
- 
            Social media discourse involves people from different backgrounds, beliefs, and motives. Thus, often such discourse can devolve into toxic interactions. Generative Models, such as Llama and ChatGPT, have recently exploded in popularity due to their capabilities in zero-shot question-answering. Because these models are increasingly being used to ask questions of social significance, a crucial research question is whether they can understand social media dynamics. This work provides a critical analysis regarding generative LLM’s ability to understand language and dynamics in social contexts, particularly considering cyberbullying and anti-cyberbullying (posts aimed at reducing cyberbullying) interactions. Specifically, we compare and contrast the capabilities of different large language models (LLMs) to understand three key aspects of social dynamics: language, directionality, and the occurrence of bullying/anti-bullying messages. We found that while fine-tuned LLMs exhibit promising results in some social media understanding tasks (understanding directionality), they presented mixed results in others (proper paraphrasing and bullying/anti-bullying detection). We also found that fine-tuning and prompt engineering mechanisms can have positive effects in some tasks. We believe that a understanding of LLM’s capabilities is crucial to design future models that can be effectively used in social applications.more » « less
- 
            Social media has revolutionized communication, allowing people worldwide to connect and interact instantly. However, it has also led to increases in cyberbullying, which poses a significant threat to children and adolescents globally, affecting their mental health and well-being. It is critical to accurately detect the roles of individuals involved in cyberbullying incidents to effectively address the issue on a large scale. This study explores the use of machine learning models to detect the roles involved in cyberbullying interactions. After examining the AMiCA dataset and addressing class imbalance issues, we evaluate the performance of various models built with four underlying LLMs (i.e. BERT, RoBERTa, T5, and GPT-2) for role detection. Our analysis shows that oversampling techniques help improve model performance. The best model, a fine-tuned RoBERTa using oversampled data, achieved an overall F1 score of 83.5%, increasing to 89.3% after applying a prediction threshold. The top-2 F1 score without thresholding was 95.7%. Our method outperforms previously proposed models. After investigating the per-class model performance and confidence scores, we show that the models perform well in classes with more samples and less contextual confusion (e.g. Bystander Other), but struggle with classes with fewer samples (e.g. Bystander Assistant) and more contextual ambiguity (e.g. Harasser and Victim). This work highlights current strengths and limitations in the development of accurate models with limited data and complex scenarios.more » « less
- 
            Due to the increased prevalence of cyberbullying and the detrimental impact it can have on adolescents, there is a critical need for tools to help combat cyberbullying. This paper introduces the ActionPoint app, a mobile application based on empirical work highlighting the importance of strong parent-teen relationships for reducing cyberbullying risk. The app is designed to help families improve their communication skills, set healthy boundaries for social media use, identify instances of cyberbullying and cyberbullying risk, and, ultimately, decrease the negative outcomes associated with cyberbullying. The app guides parents and teens through a series of interactive modules that engage them in evidence-based activities that promote better understanding of cyberbullying risks and healthy online behaviors. In this paper, we describe the app design, the psychology research supporting the design of each module, the architecture and implementation details, and crucial paths to extend the app.more » « less
- 
            We propose a simple yet effective solution to tackle the often-competing goals of fairness and utility in classification tasks. While fairness ensures that the model's predictions are unbiased and do not discriminate against any particular group or individual, utility focuses on maximizing the model's predictive performance. This work introduces the idea of leveraging aleatoric uncertainty (e.g., data ambiguity) to improve the fairness-utility trade-off. Our central hypothesis is that aleatoric uncertainty is a key factor for algorithmic fairness and samples with low aleatoric uncertainty are modeled more accurately and fairly than those with high aleatoric uncertainty. We then propose a principled model to improve fairness when aleatoric uncertainty is high and improve utility elsewhere. Our approach first intervenes in the data distribution to better decouple aleatoric uncertainty and epistemic uncertainty. It then introduces a fairness-utility bi-objective loss defined based on the estimated aleatoric uncertainty. Our approach is theoretically guaranteed to improve the fairness-utility trade-off. Experimental results on both tabular and image datasets show that the proposed approach outperforms state-of-the-art methods w.r.t. the fairness-utility trade-off and w.r.t. both group and individual fairness metrics. This work presents a fresh perspective on the trade-off between utility and algorithmic fairness and opens a key avenue for the potential of using prediction uncertainty in fair machine learning.more » « less
- 
            Cyberbullying has become a prominent risk for youth and an increasing concern for parents. To help parents reduce their child’s cyberbullying risk, anti-bullying apps (ABAs)—mobile applications for identifying and preventing instances of cyberbullying—have been developed in recent years. Given that ABAs are an emerging technology, limited research has been conducted to understand the factors predicting parents’ intentions to use them. Drawing on three interdisciplinary theoretical frameworks, a sample of parents in the U.S. recruited through Amazon Mechanical Turk completed an online survey to assess parents’ knowledge of, attitudes about, and intentions to use ABAs. Participants also rated the importance of a range of ABA functions and provided information about their child’s social media use and bullying history. A series of path analyses revealed that the importance parents placed on an app’s ability to provide information about their child’s cyberbullying risk predicted more positive attitudes toward ABAs and greater perceived usefulness of them. Stronger intentions to use ABAs were predicted by greater cyberbullying concern, greater importance of social recommendations, greater perceived usefulness, more positive attitudes toward the apps, and lower ratings of the importance of ease of use. These findings shed light on the factors predicting parents’ intentions to use ABAs and the app features they view as most important. Crucial directions for future research and implications for antibullying efforts are discussed.more » « less
- 
            A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study.more » « less
- 
            A recent surge of users migrating from Twitter to alternative platforms, such as Mastodon, raised questions regarding what migration patterns are, how different platforms impact user behaviors, and how migrated users settle in the migration process. In this study, we elaborate how we investigate these questions by collecting data over 10,000 users who migrated from Twitter to Mastodon within the first ten weeks following Elon Musk's acquisition of Twitter. Our research is structured in three primary steps. First, we develop algorithms to extract and analyze migration patters. Second, by leveraging behavioral analysis, we examine the distinct architectures of Twitter and Mastodon to learn how different platforms shape user behaviors on each platform. Last, we determine how particular behavioral factors influence users to stay on Mastodon. We share our findings of user migration, insights, and lessons learned from the user behavior study.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available