Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.more » « less
-
Abstract The emerging Internet of Things (IoTs) invokes increasing security demands that require robust encryption or anti‐counterfeiting technologies. Albeit being acknowledged as efficacious solutions in processing elaborate graphical information via multiple degrees of freedom, optical data encryption and anti‐counterfeiting techniques are typically inept in delivering satisfactory performance without compromising the desired ease‐of‐processibility or compatibility, thus leading to the exploration of novel materials and devices that are competent. Here, a robust optical data encryption technique is demonstrated utilizing polymer‐stabilized‐liquid‐crystals (PSLCs) combined with projection photoalignment and photopatterning methods. The PSLCs possess implicit optical patterns encoded via photoalignment, as well as explicit geometries produced via photopatterning. Furthermore, the PSLCs demonstrate improved robustness against harsh chemical environments and thermal stability and can be directly deployed onto various rigid and flexible substrates. Based on this, it is demonstrated that a single PSLC is apt to carry intricate information or serve as an exclusive watermark with both implicit features and explicit geometries. Moreover, a novel, generalized design strategy is developed, for the first time, to encode intricate and exclusive information with enhanced security by spatially programming the photoalignment patterns of a pair of cascade PSLCs, which further illustrates the promising capabilities of PSLCs in optical data encryption and anti‐counterfeiting.more » « less
-
Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.more » « less
-
The control of resonant metasurface for electromagnetically induced transparency (EIT) offers unprecedented opportunities to tailor lightwave coupling at the nanoscale leading to many important applications including slow light devices, optical filters, chemical and biosensors. However, the realization of EIT relies on the high degree of structural asymmetry by positional displacement of optically resonant structures, which usually lead to low quality factor (Q-factor) responses due to the light leakage from structural discontinuity from asymmetric displacements. In this work, we demonstrate a new pathway to create high quality EIT metasurface without any displacement of constituent resonator elements. The mechanism is based on the detuning of the resonator modes which generate dark-bright mode interference by simply introducing a slot in metasurface unit cells (meta-atoms). More importantly, the slot diameter and position on the meta-atom can be modulated to tune the transmittance and quality factor (Q-factor) of the metasurface, leading to a Q-factor of 1190 and near unity transmission at the same time. Our work provides a new degree of freedom in designing optically resonant elements for metamaterials and metasurfaces with tailored wave propagation and properties.more » « less
An official website of the United States government
