skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2229267

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper examines a return to the thick space of the masonry wall. The wall is where a building embraces its context and where humanity can physically experience this nexus. Contemporary technologies applied to masonry construction offer a return to both tactile solidity and the space of interaction between a building and its users. Precedents from Catalan vernacular to Herzog & de Meuron will be contrasted to offer a way of thinking through the spatial potential created through the modularity and specificity of blocks. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. In this work, a tung oil-based thermosetting resin was synthesized via free radical polymerization and reinforced with thirteen different types of sand. The viability of this process inspired the adaptation of the resin for its use as a binder material in binder jetting, an additive manufacturing process. Firstly, it was shown that the resin could have its initial viscosity (~0.33 cP) increased upon heating to attain values compatible to existing printing systems. The curing kinetics of the resin was assessed via dielectric analysis (DEA), combining the utilization of heat and ultraviolet (UV) light, showing that a resin with a viscosity of 10 cP can be fully cured after 250 min at 90 ◦C, or 300 min at 75 ◦C, both under a 365 nm light exposure. Preliminary binder-jet tests successfully provided a solid object, which was post-cured, resulting in a hard specimen. The results presented herein suggest that the tung oil-based resin in question is a suitable bio-based binder for binder-jet 3D-printing applications. The novelty of the work reported lies in the conversion of an already established and effective bio-based thermosetting resin into a versatile photocurable binder that can be irrestrictively used with unsorted sands of different composition, making this technology broadly applicable to different isolated regions, using local resources available. The technology presented herein is potentially transformative and impactful, as binder jetting is typically associated to extremely well-sorted particles. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  3. Historically, ornament has provided a tether to cultural meaning in the built world. Ornament is tied to specific cultural attributes. As an integral part of the construction, ornament negotiates with the culture from which it emerges. It is a built grammar, but it is also expressive of its own making as well as the society that shaped it. Modernity has largely reversed this connection with some important exceptions. There is a strong history of architects developing space through the design of the construction that provides what Louis Sullivan would call an “organic” link to the ornament that emerges, and this nexus of structure and form becomes the “site” of the ornament. Luigi Nervi’s ferro-cement shells and Frank Lloyd Wright’s textile blocks are two salient examples that have, through necessity or interest, developed details that generate entire projects, which then generate new projects as that construction/detail is refined and builds on the culture that inspired it. Ornament is thus a negotiation between the built artifact and the meaning of its “ornamented” expression. As architects, we now operate in a world of off-the-shelf selected components. This attitude, combined with the integration of building components into BIM programs, has made the architect a selector/consumer rather than a designer of the construction, making ornament a part of this selection process – i.e., decoration. The research project Woven Blocks is an attempt to reexamine the way in which architects can shape space through the design of the construction itself. Pulling from Frank Lloyd Wright’s textile block system, Woven Blocks imagines a 3D-printed block capable of taking advantage of a self-supporting system of enclosure that can be “programmed” with function, take on aspects of the context it resides in, and reflect the nature of its making. The project is the design of the manufacturing process as well as its end-product. This enables the building material to respond directly to its program, shaping space/meaning in potentially a more “plastic” way. This paper is first a consideration of architects thinking through construction, then a reflection on the cultural implication of their production. The site of ornament also implies a shift in perception from the textile patterns of specific cultures found in ceramics, clothing, wall mats, or flooring onto the building surface and into its lashing to the frame and the integration of its various services/systems. This lens will serve to frame the research around the project Woven Blocks, examining the efforts of the authors to shape the process of construction as a place from which ornament can emerge and meaning can be rediscovered. 
    more » « less
  4. In this work, renewable composites were prepared by the association of a thermosetting resin synthesized via free-radical polymerization, using a mixture of tung oil, n-butyl methacrylate, and divinylbenzene, with silica-rich fillers, namely an algae biomass with high silica content, and a well-sorted sand. Furthermore, to investigate if the interaction between the non-polar resin and polar reinforcements could be improved, enhancing the materials’ mechanical properties, itaconic anhydride, a bio-derived molecule obtained from itaconic acid, was introduced to the resin composition. Thermogravimetric analysis (TGA) suggested that the thermal stability of the composites was overall not changed with the addition of itaconic anhydride. The mechanical properties of the sand composites, however, did improve, as the storage modulus at room temperature, measured by dynamic mechanical analysis (DMA), almost doubled in the presence of itaconic anhydride. The glass transition temperatures of the materials increased by approximately 30 °C when sand was used as a reinforcement. Water absorption experiments validated an increase in the polarity of the unreinforced resin by the addition of itaconic anhydride to its formulation. The composites, however, did not exhibit a significant difference in polarity in the presence of itaconic anhydride. Finally, scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS), demonstrated better matrix–filler adhesion in the presence of itaconic anhydride for high-silica algae composites. 
    more » « less